吉林省柳河县第三中学2022-2023学年中考五模数学试题含解析.doc
-
资源ID:87995994
资源大小:1.07MB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
吉林省柳河县第三中学2022-2023学年中考五模数学试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,AB是O的弦,半径OCAB于点D,若O的半径为5,AB=8,则CD的长是( )A2 B3 C4 D52已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且2x1时,y的最大值为9,则a的值为A1或2 B或C D13下列运算正确的是( )ABCD4如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()ABCD5如图,一段抛物线:y=x(x5)(0x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D66如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )ABCD7如图,在ABCD中,AB=2,BC=1以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()AB1CD8某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A5.035×106B50.35×105C5.035×106D5.035×1059下列各式计算正确的是( )ABCD10小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )ABCD11下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A1个B2个C3个D4个12下列各数中,最小的数是( )A4 B3 C0 D2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,已知,第一象限内的点A在反比例函数y的图象上,第四象限内的点B在反比例函数y的图象上且OAOB,OAB60°,则k的值为_14因式分解:3x23x=_15用换元法解方程,设y=,那么原方程化为关于y的整式方程是_16方程的根是_17如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_18分解因式x2x=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知是上一点,.如图,过点作的切线,与的延长线交于点,求的大小及的长;如图,为上一点,延长线与交于点,若,求的大小及的长.20(6分)已知:如图,在ABC中,AB=BC,ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形21(6分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生20162017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图请根据图中提供的信息,回答下列问题:(1)a= %,并补全条形图(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?22(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.求关于的函数关系式;该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.23(8分)如图,在平面直角坐标系中,O为坐标原点,ABO的边AB垂直于x轴,垂足为点B,反比例函数y(x0)的图象经过AO的中点C,交AB于点D,且AD1设点A的坐标为(4,4)则点C的坐标为 ;若点D的坐标为(4,n)求反比例函数y的表达式;求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求OEF面积的最大值24(10分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90°得ADC,连接ED,抛物线()过E,A两点(1)填空:AOB= °,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围25(10分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(4,6)、(1,4);请在图中的网格平面内建立平面直角坐标系;请画出ABC关于x轴对称的A1B1C1;请在y轴上求作一点P,使PB1C的周长最小,并直接写出点P的坐标.26(12分)如图,四边形ABCD中,A=BCD=90°,BC=CD,CEAD,垂足为E,求证:AE=CE27(12分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:已知AB是O的弦,半径OCAB于点D,由垂径定理可得AD=BD=4,在RtADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.2、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=ax2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点3、D【解析】根据幂的乘方:底数不变,指数相乘合并同类项即可解答.【详解】解:A、B两项不是同类项,所以不能合并,故A、B错误,C、D考查幂的乘方运算,底数不变,指数相乘 ,故D正确;【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.4、A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形故选A【考点】简单组合体的三视图5、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可详解:当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=A2A3=OA1=5,抛物线C404的解析式为y=(x5×403)(x5×404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键6、D【解析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置掌握定义是关键此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键7、B【解析】分析:只要证明BE=BC即可解决问题;详解:由题意可知CF是BCD的平分线,BCE=DCE四边形ABCD是平行四边形,ABCD,DCE=E,BCE=AEC,BE=BC=1,AB=2,AE=BE-AB=1,故选B点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键8、A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×106,故选A考点:科学记数法表示较小的数9、B【解析】A选项中,不是同类二次根式,不能合并,本选项错误;B选项中,本选项正确;C选项中,而不是等于,本选项错误;D选项中,本选项错误;故选B.10、B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可详解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是.故选B点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率=所求情况数与总情况数之比11、B【解析】解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个故选B【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键12、A【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】根据有理数比较大小的方法,可得4203各数中,最小的数是4故选:A【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小二、填空题:(本大题共6个小题,每小题4分,共24分)13、-6【解析】如图,作ACx轴,BDx轴,OAOB,AOB=90°,OAC+AOC=90°,AOC+BOD=90°,OAC=BOD,ACOODB,OAB=60°,设A(x,),BD=OC=x,OD=AC=,B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.14、3x(x1)【解析】原式提取公因式即可得到结果【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键15、6y2-5y+2=0【解析】根据y,将方程变形即可【详解】根据题意得:3y,得到6y25y20故答案为6y25y20【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键16、x=2【解析】分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解详解:据题意得:2+2x=x2,x22x2=0, (x2)(x+1)=0, x1=2,x2=1 0, x=2故答案为:2点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验17、1【解析】骑车的学生所占的百分比是×100%=35%,步行的学生所占的百分比是110%15%35%=40%,若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为118、x(x-1)【解析】x2x= x(x-1).故答案是:x(x-1).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(),PA4;(),【解析】()易得OAC是等边三角形即AOC=60°,又由PC是O的切线故PCOC,即OCP=90°可得P的度数,由OC=4可得PA的长度()由()知OAC是等边三角形,易得APC=45°;过点C作CDAB于点D,易得AD=AO=CO,在RtDOC中易得CD的长,即可求解【详解】解:()AB是O的直径,OA是O的半径.OAC=60°,OA=OC,OAC是等边三角形.AOC=60°.PC是O的切线,OC为O的半径,PCOC,即OCP=90°P=30°.PO=2CO=8.PA=PO-AO=PO-CO=4.()由()知OAC是等边三角形,AOC=ACO=OAC=60°AQC=30°.AQ=CQ,ACQ=QAC=75°ACQ-ACO=QAC-OAC=15°即QCO=QAO=15°.APC=AQC+QAO=45°.如图,过点C作CDAB于点D.OAC是等边三角形,CDAB于点D,DCO=30°,AD=AO=CO=2.APC=45°,DCQ=APC=45°PD=CD在RtDOC中,OC=4,DCO=30°,OD=2,CD=2PD=CD=2AP=AD+DP=2+2【点睛】此题主要考查圆的综合应用20、(1)见解析 (2)见解析【解析】(1)由三角形中位线知识可得DFBG,GHBF,根据菱形的判定的判定可得四边形FBGH是菱形;(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解【详解】(1)点F、G是边AC的三等分点,AF=FG=GC又点D是边AB的中点,DHBG同理:EHBF四边形FBGH是平行四边形,连结BH,交AC于点O,OF=OG,AO=CO,AB=BC,BHFG,四边形FBGH是菱形;(2)四边形FBGH是平行四边形,BO=HO,FO=GO又AF=FG=GC,AF+FO=GC+GO,即:AO=CO四边形ABCH是平行四边形ACBH,AB=BC,四边形ABCH是正方形【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键21、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案【详解】解:(1)扇形统计图中a=15%40%20%25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2);手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,然后分当时,当时,当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)根据题意,得,即.根据题意,得,解得.,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;当时,即手机店购进型手机的数量为满足的整数时,获得利润相同;当时,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.23、 (1)C(2,2);(2)反比例函数解析式为y;直线CD的解析式为yx+1;(1)m1时,SOEF最大,最大值为.【解析】(1)利用中点坐标公式即可得出结论;(2)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论【详解】(1)点C是OA的中点,A(4,4),O(0,0),C,C(2,2);故答案为(2,2);(2)AD1,D(4,n),A(4,n+1),点C是OA的中点,C(2,),点C,D(4,n)在双曲线上,反比例函数解析式为;由知,n1,C(2,2),D(4,1),设直线CD的解析式为yax+b,直线CD的解析式为yx+1;(1)如图,由(2)知,直线CD的解析式为yx+1,设点E(m,m+1),由(2)知,C(2,2),D(4,1),2m4,EFy轴交双曲线于F,F(m,),EFm+1,SOEF(m+1)×m(m2+1m4)(m1)2+,2m4,m1时,SOEF最大,最大值为【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立SOEF与m的函数关系式24、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90°,ABO为等腰直角三角形,AOB=45°,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90°,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题25、(1)(2)见解析;(3)P(0,2)【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C,连接B1C交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C,连接B1C交y轴于点P,则点P即为所求设直线B1C的解析式为y=kx+b(k0),B1(2,-2),C(1,4),解得:,直线AB2的解析式为:y=2x+2,当x=0时,y=2,P(0,2) 点睛:本题主要考查轴对称图形的绘制和轴对称的应用.26、证明见解析.【解析】过点B作BFCE于F,根据同角的余角相等求出BCF=D,再利用“角角边”证明BCF和CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证.【详解】证明:如图,过点B作BFCE于F,CEAD,D+DCE=90°,BCD=90°,BCF+DCE=90°BCF=D,在BCF和CDE中,BCFCDE(AAS),BF=CE,又A=90°,CEAD,BFCE,四边形AEFB是矩形,AE=BF,AE=CE.27、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励【解析】(1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和500万”列不等式求解即可【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a1000)×5×4005000000,解得:a1900,答:今年该地至少有1900户享受到优先搬迁租房奖励考点:一元二次方程的应用;一元一次不等式的应用.