四川省宜宾市兴文县重点名校2022-2023学年中考数学猜题卷含解析.doc
-
资源ID:87996028
资源大小:335.50KB
全文页数:14页
- 资源格式: DOC
下载积分:25金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省宜宾市兴文县重点名校2022-2023学年中考数学猜题卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,直线AB、CD相交于点O,EOCD,下列说法错误的是( )AAODBOCBAOEBOD90°CAOCAOEDAODBOD180°2下列计算或化简正确的是()ABCD3下图是由八个相同的小正方体组合而成的几何体,其左视图是( )ABCD4如图,在五边形ABCDE中,A+B+E=300°,DP,CP分别平分EDC、BCD,则P的度数是( )A60°B65°C55°D50°5已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )ABCD6边长相等的正三角形和正六边形的面积之比为( )A13B23C16D17点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A关于x轴对称B关于y轴对称C绕原点逆时针旋转D绕原点顺时针旋转8太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A11B8C7D59如果菱形的一边长是8,那么它的周长是()A16B32C16D3210设x1,x2是一元二次方程x22x3=0的两根,则x12+x22=( )A6 B8 C10 D12二、填空题(共7小题,每小题3分,满分21分)11已知抛物线y=ax2+bx+c=0(a0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 _12对角线互相平分且相等的四边形是()A菱形B矩形C正方形D等腰梯形13在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是_14若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_15如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E则四边形AECF的面积是 16如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是_17今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_三、解答题(共7小题,满分69分)18(10分)如图,在五边形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD求证:ABCAED;当B=140°时,求BAE的度数19(5分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?20(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C(1)求双曲线解析式;(2)点P在x轴上,如果ACP的面积为5,求点P的坐标.21(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;22(10分)解方程(2x+1)2=3(2x+1)23(12分)如图,在中,垂足为D,点E在BC上,垂足为,试判断DG与BC的位置关系,并说明理由24(14分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得【详解】A、AOD与BOC是对顶角,所以AOD=BOC,此选项正确;B、由EOCD知DOE=90°,所以AOE+BOD=90°,此选项正确;C、AOC与BOD是对顶角,所以AOC=BOD,此选项错误;D、AOD与BOD是邻补角,所以AOD+BOD=180°,此选项正确;故选C【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义2、D【解析】解:A不是同类二次根式,不能合并,故A错误;B ,故B错误;C,故C错误;D,正确故选D3、B【解析】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1故选B4、A【解析】试题分析:根据五边形的内角和等于540°,由A+B+E=300°,可求BCD+CDE的度数,再根据角平分线的定义可得PDC与PCD的角度和,进一步求得P的度数解:五边形的内角和等于540°,A+B+E=300°,BCD+CDE=540°300°=240°,BCD、CDE的平分线在五边形内相交于点O,PDC+PCD=(BCD+CDE)=120°,P=180°120°=60°故选A考点:多边形内角与外角;三角形内角和定理5、A【解析】此题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.6、C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a过A作ADBC于D,则BAD=30°,AD=ABcos30°=1a=a,SABC=BCAD=×1a×a=a1连接OA、OB,过O作ODABAOB=20°,AOD=30°,OD=OBcos30°=1a=a,SABO=BAOD=×1a×a=a1,正六边形的面积为:2a1, 边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2故选C点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键7、C【解析】分析:根据旋转的定义得到即可详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角8、B【解析】根据等量关系,即(经过的路程3)×1.6+起步价2元1列出不等式求解【详解】可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x3)×1.6+21,解得:x2即此人从甲地到乙地经过的路程最多为2km故选B【点睛】考查了一元一次方程的应用关键是掌握正确理解题意,找出题目中的数量关系9、B【解析】根据菱形的四边相等,可得周长【详解】菱形的四边相等菱形的周长=4×8=32故选B【点睛】本题考查了菱形的性质,并灵活掌握及运用菱形的性质10、C【解析】试题分析:根据根与系数的关系得到x1+x2=2,x1x2=3,再变形x12+x22得到(x1+x2)22x1x2,然后利用代入计算即可解:一元二次方程x22x3=0的两根是x1、x2,x1+x2=2,x1x2=3,x12+x22=(x1+x2)22x1x2=222×(3)=1故选C二、填空题(共7小题,每小题3分,满分21分)11、或x=-1【解析】由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴【详解】点A的坐标为(-2,0),线段AB的长为8,点B的坐标为(1,0)或(-10,0)抛物线y=ax2+bx+c(a0)与x轴交于A、B两点,抛物线的对称轴为直线x=2或x=-1故答案为x=2或x=-1【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键12、B【解析】根据平行四边形的判定与矩形的判定定理,即可求得答案【详解】对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线相等且互相平分的四边形一定是矩形故选B【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理此题比较简单,解题的关键是熟记定理13、 【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案【详解】在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.故答案为.14、m>1【解析】反比例函数的图象在其每个象限内,y随x的增大而减小,>0,解得:m>1,故答案为m>1.15、1【解析】四边形ABCD为正方形,D=ABC=90°,AD=AB,ABE=D=90°,EAF=90°,DAF+BAF=90°,BAE+BAF=90°,DAF=BAE,AEBAFD,SAEB=SAFD,它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=116、【解析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论【详解】解:由图可知,黑色方砖4块,共有16块方砖,黑色方砖在整个区域中所占的比值它停在黑色区域的概率是;故答案为【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=17、3.03×101【解析】分析:科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于303000有6位整数,所以可以确定n=6-1=1详解:303000=3.03×101,故答案为:3.03×101点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n的值是解题的关键三、解答题(共7小题,满分69分)18、(1)详见解析;(2)80°【分析】(1)根据ACD=ADC,BCD=EDC=90°,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【解析】(1)根据ACD=ADC,BCD=EDC=90°,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【详解】证明:(1)AC=AD,ACD=ADC,又BCD=EDC=90°,ACB=ADE,在ABC和AED中,ABCAED(SAS);解:(2)当B=140°时,E=140°,又BCD=EDC=90°,五边形ABCDE中,BAE=540°140°×290°×2=80°【点睛】考点:全等三角形的判定与性质19、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可【详解】(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得: ,解得: .答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨.(2)解:设大货车有m辆,则小货车10-m辆,依题可得:4m+(10-m)33m010-m0解得:m10,m=8,9,10;当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m)=30m+1000,k=300,W随x的增大而增大,当m=8时,运费最少,W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案20、(1);(2)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或21、 (1)1;(2) 【解析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得: 解得:=1 经检验:=1是原分式方程的解口袋中黄球的个数为1个(2)画树状图得: 共有12种等可能的结果,两次摸出都是红球的有2种情况两次摸出都是红球的概率为: .【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件22、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+13)=0,推出方程2x+1=0,2x+13=0,求出方程的解即可试题解析:解:整理得:(2x+1)23(2x+1)=0,分解因式得:(2x+1)(2x+13)=0,即2x+1=0,2x+13=0,解得:x1=,x2=1点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大23、DGBC,理由见解析【解析】由垂线的性质得出CDEF,由平行线的性质得出2=DCE,再由已知条件得出1=DCE,即可得出结论【详解】解:DGBC,理由如下:CDAB,EFAB,CDEF,2=DCE,1=2,1=DCE,DGBC【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明1=DCE是解题关键24、1人【解析】解:设九年级学生有x人,根据题意,列方程得:,整理得0.8(x+88)=x,解之得x=1经检验x=1是原方程的解答:这个学校九年级学生有1人 设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可