天津市津南区咸水沽三中学重点达标名校2023年中考联考数学试题含解析.doc
-
资源ID:87996030
资源大小:1.04MB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
天津市津南区咸水沽三中学重点达标名校2023年中考联考数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1比较4,的大小,正确的是()A4B4C4D42在同一直角坐标系中,函数y=kx-k与(k0)的图象大致是 ( )ABCD3七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大4某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()ABCD5下列生态环保标志中,是中心对称图形的是()A B C D6实数的相反数是( )ABCD7设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )A-6B-5C-6或-5D6或58若关于x的不等式组无解,则a的取值范围是()Aa3Ba3Ca3Da39如图所示,如果将一副三角板按如图方式叠放,那么 1 等于( )ABCD10到三角形三个顶点的距离相等的点是三角形( )的交点A三个内角平分线B三边垂直平分线C三条中线D三条高二、填空题(共7小题,每小题3分,满分21分)11 “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示第五组被抽到的概率是_12一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3)若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_13已知是一元二次方程的一个根,则方程的另一个根是_14已知:如图,矩形ABCD中,AB5,BC3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为_15已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_厘米16PA、PB分别切O于点A、B,PAB=60°,点C在O上,则ACB的度数为_17如图AB是直径,C、D、E为圆周上的点,则_三、解答题(共7小题,满分69分)18(10分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?19(5分)先化简,再求值:3a(a1+1a+1)1(a+1)1,其中a=120(8分)在平面直角坐标系中,点 , ,将直线平移与双曲线在第一象限的图象交于、两点(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;(2)若,如图2,当时,求的值;如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为21(10分)计算:; 解方程:22(10分)解方程:(1)x27x180(2)3x(x1)22x23(12分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.24(14分)直线y1kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D(1)求直线AB的解析式;(2)根据图象写出不等式kx+b0的解集;(3)若点P是x轴上一动点,当COD与ADP相似时,求点P的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据4=且4=进行比较【详解】解:易得:4=且4=,所以4故选C.【点睛】本题主要考查开平方开立方运算。2、D【解析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.3、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键4、B【解析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:故选B【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程5、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【考点】中心对称图形6、D【解析】根据相反数的定义求解即可【详解】的相反数是-,故选D【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数7、A【解析】试题解析:x1,x2是方程x2-2x-1=0的两个实数根,x1+x2=2,x1x2=-1=.故选A.8、A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可【详解】不等式组无解,a43a+2,解得:a3,故选A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.9、B【解析】解:如图,2=90°45°=45°,由三角形的外角性质得,1=2+60°=45°+60°=105°故选B 点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键10、B【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点故选B点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据概率是所求情况数与总情况数之比,可得答案【详解】因为共有六个小组,所以第五组被抽到的概率是,故答案为:【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比12、(,)或(,)【解析】分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得【详解】如图,当点A、B、C的对应点在第一象限时,由位似比为1:2知点A(0,)、B(,0)、C(,),该正方形的中心点的P的坐标为(,);当点A、B、C的对应点在第三象限时,由位似比为1:2知点A(0,-)、B(-,0)、C(-,-),此时新正方形的中心点Q的坐标为(-,-),故答案为(,)或(-,-)【点睛】本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质13、【解析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可【详解】设方程的另一根为x1,又x=2-,由根与系数关系,得x1+2-=4,解得x1=2+故答案为:【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解14、【解析】根据矩形的性质得到CD=AB=5,AD=BC=3,D=C=90°,根据折叠得到BFAB5,EFEA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】矩形ABCD中,AB5,BC3,CD=AB=5,AD=BC=3,D=C=90°,由折叠的性质可知,BFAB5,EFEA,在RtBCF中,CF4, DFDCCF1,设AEx,则EFx,DE3x,在RtDEF中,EF2DE2+DF2,即x2(3x)2+12,解得,x,故答案为:【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.15、1或5.【解析】小正方形的高不变,根据面积即可求出小正方形平移的距离【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷21,如图,小正方形平移距离为1厘米;如图,小正方形平移距离为4+15厘米故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变画出图形即可直观解答16、60°或120°【解析】连接OA、OB,根据切线的性质得出OAP的度数,OBP的度数;再根据四边形的内角和是360°,求出AOB的度数,有圆周角定理或圆内接四边形的性质,求出ACB的度数即可【详解】解:连接OA、OBPA,PB分别切O于点A,B,OAPA,OBPB;PAO=PBO=90°;又APB=60°,在四边形AOBP中,AOB=360°90°90°60°=120°, 即当C在D处时,ACB=60°在四边形ADBC中,ACB=180°ADB=180°60°=120°于是ACB的度数为60°或120°,故答案为60°或120°【点睛】本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题17、90°【解析】连接OE,根据圆周角定理即可求出答案【详解】解:连接OE,根据圆周角定理可知:C=AOE,D=BOE,则C+D=(AOE+BOE)=90°,故答案为:90°【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半三、解答题(共7小题,满分69分)18、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100m)6000,解得:m1,m是整数,m最大可取1答:这所中学最多可以购买篮球1个【点睛】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般19、2【解析】试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将的值代入化简后的式子得出答案.试题解析:解:原式=3a3+6a1+3a1a14a1=3a3+4a1a1,当a=1时,原式=14+1611=220、(1)作图见解析,;(2)k=6;【解析】(1)根据题意,画出对应的图形,根据旋转的性质可得,从而求出点E、F的坐标;(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得();根据等角对等边可得,可列方程(),然后联立方程即可求出点D的坐标,从而求出k的值;用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令=0即可求出m的值,从而求出k的值【详解】解:(1)点 , ,如图1,由旋转知,点在轴正半轴上,点在轴负半轴上,;(2)过点作轴于,过点作轴于,过点作于,设,点,在双曲线上,(),(),联立()()解得:,;如图3,直线的解析式为(),双曲线(),联立()()得:,即:,直线与双曲线有唯一公共点,(舍或,故答案为:【点睛】此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析式、旋转的性质、相似三角形的判定及性质是解决此题的关键21、(1)2 (2)【解析】(1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【详解】(1)原式=2; (2)【点睛】本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键22、(1)x19,x22;(2)x11,x2 【解析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【详解】解:(1)x27x180,(x9)(x+2)0, x90,x+20, x19,x22;(2)3x(x1)22x,3x(x1)+2(x1)0,(x1)(3x+2)0,x10,3x+20,x11,x2 【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键23、 (1);(2).【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) “美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下:美丽光明美-(美,丽)(光,美)(美,明)丽(美,丽)-(光,丽)(明,丽)光(美,光)(光,丽)-(光,明)明(美,明)(明,丽)(光,明)-根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比24、 (1) yx+6;(2) 0x2或x4;(3) 点P的坐标为(2,0)或(3,0).【解析】(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;(2)根据点坐标和图象即可得出结论;(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论【详解】解:(1)点和点在反比例函数的图象上,解得,即把两点代入中得 ,解得:,所以直线的解析式为:;(2)由图象可得,当时,的解集为或(3)由(1)得直线的解析式为,当时,y6,当时,点坐标为 .设P点坐标为,由题可以,点在点左侧,则由可得当时,解得,故点P坐标为当时,解得,即点P的坐标为因此,点P的坐标为或时,与相似【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键