北京一零一中学2023届中考猜题数学试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如果t>0,那么a+t与a的大小关系是( )Aa+t>a Ba+t<a Ca+ta D不能确定2计算(x2)(x+5)的结果是Ax2+3x+7Bx2+3x+10Cx2+3x10Dx23x1037的相反数是( )A7B7CD4如图,矩形ABOC的顶点A的坐标为(4,5),D是OB的中点,E是OC上的一点,当ADE的周长最小时,点E的坐标是()A(0,)B(0,)C(0,2)D(0,)5据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为ABCD6已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( ) ABCD7如图是一个由5个相同的正方体组成的立体图形,它的主视图是()ABCD8如图所示,结论:;,其中正确的是有( )A1个B2个C3个D4个9已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A4b+2cB0C2cD2a+2c10将某不等式组的解集表示在数轴上,下列表示正确的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在等腰直角三角形ABC中,C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_(结果保留)12如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_13如图,点M是反比例函数(x0)图像上任意一点,MNy轴于N,点P是x轴上的动点,则MNP的面积为A1B2C4D不能确定14二次函数y(x2m)2+1,当mxm+1时,y随x的增大而减小,则m的取值范围是_15甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)16估计无理数在连续整数_与_之间17如图,已知函数y3x+b和yax3的图象交于点P(2,5),则根据图象可得不等式3x+bax3的解集是_三、解答题(共7小题,满分69分)18(10分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上(1)在图(1)中画出一个等腰ABE,使其面积为3.5;(2)在图(2)中画出一个直角CDF,使其面积为5,并直接写出DF的长19(5分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.20(8分)化简:.21(10分)在ABC中,AB=ACBC,点D和点A在直线BC的同侧,BD=BC,BAC=,DBC=,且+=110°,连接AD,求ADB的度数(不必解答)小聪先从特殊问题开始研究,当=90°,=30°时,利用轴对称知识,以AB为对称轴构造ABD的轴对称图形ABD,连接CD(如图1),然后利用=90°,=30°以及等边三角形等相关知识便可解决这个问题请结合小聪研究问题的过程和思路,在这种特殊情况下填空:DBC的形状是 三角形;ADB的度数为 在原问题中,当DBCABC(如图1)时,请计算ADB的度数;在原问题中,过点A作直线AEBD,交直线BD于E,其他条件不变若BC=7,AD=1请直接写出线段BE的长为 22(10分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n)求直线AB的解析式和点B的坐标;求ABP的面积(用含n的代数式表示);当SABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标23(12分)如图,ABC,CDE均是等腰直角三角形,ACB=DCE=90°,点E在AB上,求证:CDACEB24(14分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:根据不等式的基本性质即可得到结果.t0,ata,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.2、C【解析】根据多项式乘以多项式的法则进行计算即可.【详解】 故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.3、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.4、B【解析】解:作A关于y轴的对称点A,连接AD交y轴于E,则此时,ADE的周长最小四边形ABOC是矩形,ACOB,AC=OBA的坐标为(4,5),A(4,5),B(4,0)D是OB的中点,D(2,0)设直线DA的解析式为y=kx+b,直线DA的解析式为当x=0时,y=,E(0,)故选B5、C【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】解:5657万用科学记数法表示为,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值6、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k1,b1因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限综上所述,符合条件的图象是C选项故选C考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系7、A【解析】画出从正面看到的图形即可得到它的主视图【详解】这个几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图8、C【解析】根据已知的条件,可由AAS判定AEBAFC,进而可根据全等三角形得出的结论来判断各选项是否正确【详解】解:如图:在AEB和AFC中,有,AEBAFC;(AAS)FAM=EAN,EAN-MAN=FAM-MAN,即EAM=FAN;(故正确)又E=F=90°,AE=AF,EAMFAN;(ASA)EM=FN;(故正确)由AEBAFC知:B=C,AC=AB;又CAB=BAC,ACNABM;(故正确)由于条件不足,无法证得CD=DN;故正确的结论有:;故选C【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难9、A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,a+c>0,a2b>0,c+2b<0,则原式=a+ca+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.10、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“”,“”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左点睛:不等式组的解集为1x<3在数轴表示1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,向右画;< ,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题(共7小题,每小题3分,满分21分)11、4【解析】由在等腰直角三角形ABC中,C=90°,AB=4,可求得直角边AC与BC的长,继而求得ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案【详解】解:在等腰直角三角形ABC中,C=90°,AB=4,AC=BC=ABsin45°=AB=2,SABC=ACBC=4,点D为AB的中点,AD=BD=AB=2,S扇形EAD=S扇形FBD=××22=,S阴影=SABCS扇形EADS扇形FBD=4故答案为:4【点睛】此题考查了等腰直角三角形的性质以及扇形的面积注意S阴影=SABCS扇形EADS扇形FBD12、1【解析】根据相似三角形的对应边的比相等列出比例式,计算即可【详解】ADEACB,=,即=,解得:BD=1故答案为1【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键13、A【解析】可以设出M的坐标,的面积即可利用M的坐标表示,据此即可求解【详解】设M的坐标是(m,n),则mn=2.则MN=m,的MN边上的高等于n.则的面积 故选A.【点睛】考查反比例函数系数k的几何意义,是常考点,需要学生熟练掌握.14、m>1【解析】由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x的增大而减小,可求得m+12m,即m1故答案为m1点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小是解题的关键15、甲【解析】乙所得环数的平均数为:=5,S2=+=+=16.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.16、3 4 【解析】先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】解:,无理数在连续整数3与4之间【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.17、x1【解析】根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式 3x+bax-3的解集【详解】解:函数y=3x+b和y=ax-3的图象交于点P(-1,-5),不等式 3x+bax-3的解集是x-1,故答案为:x-1【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.三、解答题(共7小题,满分69分)18、 (1)见解析;(2)DF 【解析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案【详解】(1)如图(1)所示:ABE,即为所求;(2)如图(2)所示:CDF即为所求,DF=【点睛】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键19、(1);(2)【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:k b1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .20、【解析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果【详解】解:原式21、(1)DBC是等边三角形,ADB=30°(1)ADB=30°;(3)7+或7【解析】(1)如图1中,作ABDABD,BDBD,连接CD,AD,由ABDABD,推出DBC是等边三角形;借助的结论,再判断出ADBADC,得ADBADC,由此即可解决问题(1)当60°110°时,如图3中,作AB DABD,B DBD,连接CD,AD,证明方法类似(1)(3)第种情况:当60°110°时,如图3中,作AB DABD,B DBD,连接CD,AD,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第种情况:当0°60°时,如图4中,作ABDABD,BDBD,连接CD,AD证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论【详解】(1)如图1中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,BAC=90°,ABC=45°,DBC=30°,ABD=ABCDBC=15°,在ABD和ABD中,ABDABD,ABD=ABD=15°,ADB=ADB,DBC=ABD+ABC=60°,BD=BD,BD=BC,BD=BC,DBC是等边三角形,DBC是等边三角形,DB=DC,BDC=60°,在ADB和ADC中,ADBADC,ADB=ADC,ADB=BDC=30°,ADB=30°(1)DBCABC,60°110°,如图3中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,ABC=ACB,BAC=,ABC=(180°)=90°,ABD=ABCDBC=90°,同(1)可证ABDABD,ABD=ABD=90°,BD=BD,ADB=ADBDBC=ABD+ABC=90°+90°=180°(+),+=110°,DBC=60°,由(1)可知,ADBADC,ADB=ADC,ADB=BDC=30°,ADB=30°(3)第情况:当60°110°时,如图31,由(1)知,ADB=30°,作AEBD,在RtADE中,ADB=30°,AD=1,DE=,BCD'是等边三角形,BD'=BC=7,BD=BD'=7,BE=BDDE=7;第情况:当0°60°时,如图4中,作ABD=ABD,BD=BD,连接CD,AD同理可得:ABC=(180°)=90°,ABD=DBCABC=(90°),同(1)可证ABDABD,ABD=ABD=(90°),BD=BD,ADB=ADB,DBC=ABCABD=90°(90°)=180°(+),DB=DC,BDC=60°同(1)可证ADBADC,ADB=ADC,ADB+ADC+BDC=360°,ADB=ADB=150°,在RtADE中,ADE=30°,AD=1,DE=,BE=BD+DE=7+,故答案为:7+或7【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型22、 (1) AB的解析式是y=-x+1点B(3,0)(2)n-1;(3) (3,4)或(5,2)或(3,2)【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AMPD,垂足为M,求得AM的长,即可求得BPD和PAB的面积,二者的和即可求得;(3)当SABP=2时,n-1=2,解得n=2,则OBP=45°,然后分A、B、P分别是直角顶点求解试题解析:(1)y=-x+b经过A(0,1),b=1,直线AB的解析式是y=-x+1当y=0时,0=-x+1,解得x=3,点B(3,0)(2)过点A作AMPD,垂足为M,则有AM=1,x=1时,y=-x+1=,P在点D的上方,PD=n-,SAPD=PDAM=×1×(n-)=n-由点B(3,0),可知点B到直线x=1的距离为2,即BDP的边PD上的高长为2,SBPD=PD×2=n-,SPAB=SAPD+SBPD=n-+n-=n-1;(3)当SABP=2时,n-1=2,解得n=2,点P(1,2)E(1,0),PE=BE=2,EPB=EBP=45°第1种情况,如图1,CPB=90°,BP=PC,过点C作CN直线x=1于点NCPB=90°,EPB=45°,NPC=EPB=45°又CNP=PEB=90°,BP=PC,CNPBEP,PN=NC=EB=PE=2,NE=NP+PE=2+2=4,C(3,4)第2种情况,如图2PBC=90°,BP=BC,过点C作CFx轴于点FPBC=90°,EBP=45°,CBF=PBE=45°又CFB=PEB=90°,BC=BP,CBFPBEBF=CF=PE=EB=2,OF=OB+BF=3+2=5,C(5,2)第3种情况,如图3,PCB=90°,CP=EB,CPB=EBP=45°,在PCB和PEB中,PCBPEB(SAS),PC=CB=PE=EB=2,C(3,2)以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2)考点:一次函数综合题23、见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可试题解析:证明:ABC、CDE均为等腰直角三角形,ACB=DCE=90°,CE=CD,BC=AC,ACBACE=DCEACE,ECB=DCA,在CDA与CEB中,CDACEB考点:全等三角形的判定;等腰直角三角形24、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【解析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.