欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    四川宜宾县横江片区2023年中考押题数学预测卷含解析.doc

    • 资源ID:87996170       资源大小:1.02MB        全文页数:22页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    四川宜宾县横江片区2023年中考押题数学预测卷含解析.doc

    2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列计算正确的是()A5x2x=3xB(a+3)2=a2+9C(a3)2=a5Da2p÷ap=a3p22018的绝对值是( )A±2018B2018CD20183郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米)2.102.202.252.302.352.402.452.50人数23245211则下列叙述正确的是()A这些运动员成绩的众数是 5B这些运动员成绩的中位数是 2.30C这些运动员的平均成绩是 2.25D这些运动员成绩的方差是 0.07254在0,-2,5,-0.3中,负数的个数是( )A1B2C3D45小苏和小林在如图所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图所示.下列叙述正确的是( ).A两人从起跑线同时出发,同时到达终点B小苏跑全程的平均速度大于小林跑全程的平均速度C小苏前跑过的路程大于小林前跑过的路程D小林在跑最后的过程中,与小苏相遇2次6点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A0B1C1D720177为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,1,x,2,1,1若这组数据的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是18如图,在ABC中,ABC=90°,AB=8,BC=1若DE是ABC的中位线,延长DE交ABC的外角ACM的平分线于点F,则线段DF的长为( )A7B8C9D109长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A205万BCD10抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)D(-2,-3)二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是 12点 C 在射线 AB上,若 AB=3,BC=2,则AC为_13高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号通过小客车数量(辆)260330300360240在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是_.14当a3时,代数式的值是_15两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为_16如图,在ABC中,AB5,AC4,BC3,按以下步骤作图:以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;作射线AE;以同样的方法作射线BF,AE交BF于点O,连接OC,则OC_.三、解答题(共8题,共72分)17(8分)已知顶点为A的抛物线ya(x)22经过点B(,2),点C(,2)(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPMMAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN,若点N落在x轴上,请直接写出Q点的坐标18(8分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点求此抛物线的解析式;求C、D两点坐标及BCD的面积;若点P在x轴上方的抛物线上,满足SPCD=SBCD,求点P的坐标.19(8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为_;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由20(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图ABC笔试859590口试 8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选(从A、B、C、选择一个填空)21(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(2,3)求一次函数和反比例函数解析式若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求ABF的面积根据图象,直接写出不等式的解集22(10分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 50 89 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 78 99 72 97 76 99 74 99 73 98 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级初一1236初二011018(说明:成绩90分及以上为优秀,8090分为良好,6080分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一8488.5初二84.274(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).23(12分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数24如图,一次函数ykxb的图象与反比例函数y(x0)的图象交于点P(n,2),与x轴交于点A(4,0),与y轴交于点C,PBx轴于点B,点A与点B关于y轴对称(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案【详解】解:A5x2x=7x,故此选项错误;B(a+3)2=a2+6a+9,故此选项错误;C(a3)2=a6,故此选项错误;Da2p÷ap=a3p,正确故选D【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键2、D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:2018的绝对值是2018,即故选D点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.3、B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量4、B【解析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1故选B5、D【解析】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.6、B【解析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案【详解】解:由题意,得a=-4,b=1(a+b)2017=(-1)2017=-1,故选B【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键7、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)÷6=-1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2=2故选A8、B【解析】根据三角形中位线定理求出DE,得到DFBM,再证明EC=EF=AC,由此即可解决问题【详解】在RTABC中,ABC=90°,AB=2,BC=1,AC=10,DE是ABC的中位线,DFBM,DE=BC=3,EFC=FCM,FCE=FCM,EFC=ECF,EC=EF=AC=5,DF=DE+EF=3+5=2故选B9、C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值10、A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】利用同角的余角相等,易得EAB=PAD,再结合已知条件利用SAS可证两三角形全等; 过B作BFAE,交AE的延长线于F,利用中的BEP=90°,利用勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF; 利用中的全等,可得APD=AEB,结合三角形的外角的性质,易得BEP=90°,即可证; 连接BD,求出ABD的面积,然后减去BDP的面积即可; 在RtABF中,利用勾股定理可求AB2,即是正方形的面积【详解】EAB+BAP=90°,PAD+BAP=90°, EAB=PAD, 又AE=AP,AB=AD, 在APD和AEB中, , APDAEB(SAS); 故此选项成立; APDAEB, APD=AEB, AEB=AEP+BEP,APD=AEP+PAE, BEP=PAE=90°, EBED; 故此选项成立; 过B作BFAE,交AE的延长线于F, AE=AP,EAP=90°, AEP=APE=45°, 又中EBED,BFAF, FEB=FBE=45°, 又BE= = = , BF=EF= , 故此选项不正确; 如图,连接BD,在RtAEP中, AE=AP=1, EP= , 又PB= , BE= , APDAEB, PD=BE= , S ABP+S ADP=S ABD-S BDP= S 正方形ABCD- ×DP×BE= ×(4+ )- × × = +  故此选项不正确 EF=BF= ,AE=1, 在RtABF中,AB 2=(AE+EF) 2+BF 2=4+ , S 正方形ABCD=AB 2=4+ , 故此选项正确 故答案为【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识12、2或2【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,AB=3,BC=2,AC=ABBC=3-2=2;(2)当点C在线段AB的延长线上时,如图,AB=3,BC=2,AC=AB+BC=3+2=2 故答案为2或2点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解13、B【解析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题14、1【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得【详解】原式÷,当a3时,原式1,故答案为:1【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则15、【解析】依据B=C=45°,DFE=45°,即可得出BGF=CFH,进而得到BFGCHF,依据相似三角形的性质,即可得到=,即=,即可得到CH=【详解】解:AG=1,BG=3,AB=4,ABC是等腰直角三角形,BC=4,B=C=45°,F是BC的中点,BF=CF=2,DEF是等腰直角三角形,DFE=45°,CFH=180°BFG45°=135°BFG,又BFG中,BGF=180°BBFG=135°BFG,BGF=CFH,BFGCHF,=,即=,CH=,故答案为【点睛】本题主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.16、【解析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案【详解】过点O作ODBC,OGAC,垂足分别为D,G,由题意可得:O是ACB的内心,AB=5,AC=4,BC=3,BC2+AC2=AB2,ABC是直角三角形,ACB=90°,四边形OGCD是正方形,DO=OG=1,CO=故答案为【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键三、解答题(共8题,共72分)17、 (1) y(x)22;(2)POE的面积为或;(3)点Q的坐标为(,)或(,2)或(,2)【解析】(1)将点B坐标代入解析式求得a的值即可得;(2)由OPM=MAF知OPAF,据此证OPEFAE得=,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得【详解】解:(1)把点B(,2)代入ya(x)22,解得a1,抛物线的表达式为y(x)22,(2)由y(x)22知A(,2),设直线AB表达式为ykxb,代入点A,B的坐标得,解得,直线AB的表达式为y2x1,易求E(0,1),F(0,),M(,0),若OPMMAF,OPAF,OPEFAE,OPFA ,设点P(t,2t1),则,解得t1,t2,由对称性知,当t1时,也满足OPMMAF,t1,t2都满足条件,POE的面积OE·|t|,POE的面积为或;(3)如图,若点Q在AB上运动,过N作直线RSy轴,交QR于点R,交NE的延长线于点S,设Q(a,2a1),则NEa,QN2a.由翻折知QNQN2a,NENEa,由QNEN90°易知QRNNSE,即=2,QR2,ES ,由NEESNSQR可得a2,解得a,Q(,),如图,若点Q在BC上运动,且Q在y轴左侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2)综上,点Q的坐标为(,)或(,2)或(,2)【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点18、 (1)y=(x1)2+4;(2)C(1,0),D(3,0);6;(3)P(1+,),或P(1,)【解析】(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标【详解】解:(1)、抛物线的顶点为A(1,4), 设抛物线的解析式y=a(x1)2+4,把点B(0,3)代入得,a+4=3, 解得a=1, 抛物线的解析式为y=(x1)2+4;(2)由(1)知,抛物线的解析式为y=(x1)2+4; 令y=0,则0=(x1)2+4, x=1或x=3, C(1,0),D(3,0); CD=4,SBCD=CD×|yB|=×4×3=6;(3)由(2)知,SBCD=CD×|yB|=×4×3=6;CD=4, SPCD=SBCD,SPCD=CD×|yP|=×4×|yP|=3, |yP|= , 点P在x轴上方的抛物线上,yP0, yP= , 抛物线的解析式为y=(x1)2+4; =(x1)2+4,x=1±, P(1+ , ),或P(1,)【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.19、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】试题分析:(1)360°×(115%45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120273320=12080=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人考点:条形统计图;扇形统计图20、(1)90;(2)144度;(3)105,120,75;(4)B【解析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360°乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为360°×40%144°,故答案为144;(3)A同学得票数为300×35%105,B同学得票数为300×40%120,C同学得票数为300×25%75,故答案为105、120、75;(4)A的最终得分为92.5(分),B的最终得分为98(分),C的最终得分为84(分),B最终当选,故答案为B【点睛】本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、(1)yx+,y;(2)12;(3) x2或0x4.【解析】(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求ABF的面积;(3)直接根据图象可得【详解】(1)一次函数yx+b的图象与反比例函数y (k0)图象交于A(3,2)、B两点,3×(2)+b,k2×36b,k6一次函数解析式y,反比例函数解析式y.(2)根据题意得: ,解得: ,SABF×4×(4+2)12(3)由图象可得:x2或0x4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键22、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好【解析】(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;(2)根据平均数、众数、中位数的统计意义回答【详解】(1)补全表格如下:整理、描述数据:初一成绩x满足10x19的有:11 19 19 11 19 19 17 11,共1个故答案为:1分析数据:在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2故答案为:19,2(2)初一年级掌握生态环保知识水平较好因为两个年级的平均数相差不大,但是初一年级同学的中位数是115,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好【点睛】本题考查了频数(率)分布表,众数、中位数以及平均数掌握众数、中位数以及平均数的定义是解题的关键23、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1(2)观察条形统计图,这组数据的平均数为15;在这组数据中,16出现了12次,出现的次数最多,这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键24、(1)yx1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AOBO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AOBO,PBCO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BPCD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标试题解析:(1)点A与点B关于y轴对称,AOBO,A(4,0),B(4,0),P(4,2),把P(4,2)代入y得m8,反比例函数的解析式:y 把A(4,0),P(4,2)代入ykxb得:,解得:,所以一次函数的解析式:yx1. (2)点A与点B关于y轴对称,OA=OB PB丄x轴于点B,PBA=90°,COA=90°,PBCO,点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形点C为线段AP的中点,BC=,BC和PC是菱形的两条边由yx1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y的图象于点D,分别连结PD、BD,点D(8,1), BPCDPEBE1, CEDE4,PB与CD互相垂直平分, 四边形BCPD为菱形. 点D(8,1)即为所求.

    注意事项

    本文(四川宜宾县横江片区2023年中考押题数学预测卷含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开