北京市北京昌平临川育人校2023届中考数学猜题卷含解析.doc
-
资源ID:87996310
资源大小:939KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
北京市北京昌平临川育人校2023届中考数学猜题卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1从 ,0, ,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD2我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD3已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A10B14C10或14D8或104已知am=2,an=3,则a3m+2n的值是()A24B36C72D65已知一组数据:12,5,9,5,14,下列说法不正确的是( )A平均数是9B中位数是9C众数是5D极差是56如图,在平面直角坐标系中,OAB的顶点A在x轴正半轴上,OC是OAB的中线,点B、C在反比例函数y=(x0)的图象上,则OAB的面积等于()A2B3C 4D676的倒数是()ABC6D68如图,O内切于正方形ABCD,边BC、DC上两点M、N,且MN是O的切线,当AMN的面积为4时,则O的半径r是()AB2C2D49计算(ab2)3的结果是()A3ab2Ba3b6Ca3b5Da3b610下列几何体是棱锥的是( )ABCD11如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )ABCD12下列图形中,是轴对称图形的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13圆锥的底面半径为2,母线长为6,则它的侧面积为_14如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是_15已知关于 x 的函数 y=(m1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_16在计算器上,按照下面如图的程序进行操作:如表中的x与y分别是输入的6个数及相应的计算结果:上面操作程序中所按的第三个键和第四个键分别是_、_x321012y53113517如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_cm18如图,在矩形ABCD中,AB4,BC5,点E是边CD的中点,将ADE沿AE折叠后得到AFE延长AF交边BC于点G,则CG为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知关于x的一元二次方程x2+(2m+3)x+m21有两根,求m的取值范围;若+1求m的值20(6分)如果想毁掉一个孩子,就给他一部手机!这是2017年微信圈一篇热传的文章国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图,的统计图,已知“查资料”的人数是40人请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数21(6分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计)22(8分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,交CB的延长线于点E(1)求证:DFAC;(2)求tanE的值23(8分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把BAD沿直线BD折叠,点A的对应点为A(1)若点A落在矩形的对角线OB上时,OA的长= ;(2)若点A落在边AB的垂直平分线上时,求点D的坐标;(3)若点A落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可)24(10分)张老师在黑板上布置了一道题:计算:2(x+1)2(4x5),求当x和x时的值小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由25(10分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD1米,A27°,求跨度AB的长(精确到0.01米).26(12分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?27(12分)计算: ÷ + 20180参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据有理数的定义可找出在从,0,6这5个数中只有0、6为有理数,再根据概率公式即可求出抽到有理数的概率【详解】在,0,6这5个数中有理数只有0、6这3个数,抽到有理数的概率是,故选C【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键2、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故选C【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答3、B【解析】试题分析: 2是关于x的方程x22mx+3m=0的一个根,224m+3m=0,m=4,x28x+12=0,解得x1=2,x2=1当1是腰时,2是底边,此时周长=1+1+2=2; 当1是底边时,2是腰,2+21,不能构成三角形 所以它的周长是2 考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质4、C【解析】试题解析:am=2,an=3,a3m+2n=a3ma2n=(am)3(an)2=23×32=8×9=1故选C.5、D【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)÷5=9,故选项A正确;重新排列为5,5,9,12,14,中位数为9,故选项B正确;5出现了2次,最多,众数是5,故选项C正确;极差为:145=9,故选项D错误故选D6、B【解析】作BDx轴于D,CEx轴于E,BDCE,OC是OAB的中线,设CE=x,则BD=2x,C的横坐标为,B的横坐标为,OD=,OE=,DE=OE-OD=,AE=DE=,OA=OE+AE=,SOAB=OABD=×=1故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.7、A【解析】解:6的倒数是故选A8、C【解析】连接,交于点设则根据AMN的面积为4,列出方程求出的值,再计算半径即可.【详解】连接,交于点 内切于正方形 为的切线,经过点 为等腰直角三角形, 为的切线, 设则 AMN的面积为4,则 即解得 故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.9、D【解析】根据积的乘方与幂的乘方计算可得【详解】解:(ab2)3=a3b6,故选D【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则10、D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.11、A【解析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.12、B【解析】分析:根据轴对称图形的概念求解详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形二、填空题:(本大题共6个小题,每小题4分,共24分)13、12【解析】试题分析:根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积解:根据圆锥的侧面积公式:rl=×2×6=12,故答案为12考点:圆锥的计算14、【解析】解:连接AG,由旋转变换的性质可知,ABG=CBE,BA=BG=5,BC=BE,由勾股定理得,CG=4,DG=DCCG=1,则AG=, ,ABG=CBE,ABGCBE,解得,CE=,故答案为【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键15、1 或 0 或 【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值【详解】解:(1)当 m1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴交点坐标为( ,0);与 y 轴交点坐标(0,1)符合题意(2)当 m10 时,m1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是=44(m1)m0,解得,(m)2,解得 m 或 m 将(0,0)代入解析式得,m=0,符合题意(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,这时:=44(m1)m=0,解得:m= 故答案为1 或 0 或【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解16、, 【解析】根据表格中数据求出x、y之间的关系,即可得出答案【详解】解:根据表格中数据分析可得:x、y之间的关系为:y=2x+1,则按的第三个键和第四个键应是“+”“1”故答案为+,1【点睛】此题考查了有理数的运算,要求同学们能熟练应用计算器,会用科学记算器进行计算17、2【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度圆柱底面的周长为6cm,圆柱高为2cm,AB2cm,BCBC3cm,AC222+3213,ACcm,这圈金属丝的周长最小为2AC2cm故答案为2【点睛】本题考查了平面展开最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决18、【解析】如图,作辅助线,首先证明EFGECG,得到FGCG(设为x ),FEGCEG;同理可证AFAD5,FEADEA,进而证明AEG为直角三角形,运用相似三角形的性质即可解决问题【详解】连接EG;四边形ABCD为矩形,DC90°,DCAB4;由题意得:EFDEEC2,EFGD90°;在RtEFG与RtECG中,RtEFGRtECG(HL),FGCG(设为x ),FEGCEG;同理可证:AFAD5,FEADEA,AEG×180°90°,而EFAG,可得EFGAFE, 225x,x,CG,故答案为:.【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)m;(2)m的值为2【解析】(1)根据方程有两个相等的实数根可知1,求出m的取值范围即可;(2)根据根与系数的关系得出+与的值,代入代数式进行计算即可【详解】(1)由题意知,(2m+2)24×1×m21,解得:m;(2)由根与系数的关系得:+(2m+2),m2,+1,(2m+2)+m21,解得:m11,m12,由(1)知m,所以m11应舍去,m的值为2【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,x1+x2,x1x2是解答此题的关键20、(1)35%,126;(2)见解析;(3)1344人【解析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果【详解】(1)根据题意得:1(40%+18%+7%)35%,则“玩游戏”对应的圆心角度数是360°×35%126°,故答案为35%,126;(2)根据题意得:40÷40%100(人),3小时以上的人数为100(2+16+18+32)32(人),补全图形如下:;(3)根据题意得:2100×1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.21、44cm【解析】解:如图,设BM与AD相交于点H,CN与AD相交于点G,由题意得,MH=8cm,BH=40cm,则BM=32cm,四边形ABCD是等腰梯形,AD=50cm,BC=20cm,EFCD,BEMBAH,即,解得:EM=1EF=EMNFBC=2EMBC=44(cm)答:横梁EF应为44cm根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由BEMBAH,可得出EM,继而得出EF的长度22、(1)证明见解析;(2)tanCBG=【解析】(1)连接OD,CD,根据圆周角定理得BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:ODAC,根据切线的性质可得结论;(2)如图,连接BG,先证明EFBG,则CBG=E,求CBG的正切即可【详解】解:(1)证明:连接OD,CD,BC是O的直径,BDC=90°,CDAB,AC=BC,AD=BD,OB=OC,OD是ABC的中位线ODAC,DF为O的切线,ODDF,DFAC;(2)解:如图,连接BG,BC是O的直径,BGC=90°,EFC=90°=BGC,EFBG,CBG=E,RtBDC中,BD=3,BC=5,CD=4,SABC=,即6×4=5BG,BG=,由勾股定理得:CG=,tanCBG=tanE=.【点睛】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点23、(1)1;(2)点D(82,0);(3)点D的坐标为(31,0)或(31,0)【解析】分析:()由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA=1,据此可得答案; ()连接AA,利用折叠的性质和中垂线的性质证BAA是等边三角形,可得ABD=ABD=30°,据此知AD=ABtanABD=2,继而可得答案; ()分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得详解:()如图1,由题意知OA=8、AB=1,OB=10,由折叠知,BA=BA=1,OA=1 故答案为1; ()如图2,连接AA点A落在线段AB的中垂线上,BA=AA BDA是由BDA折叠得到的,BDABDA,ABD=ABD,AB=AB,AB=AB=AA,BAA是等边三角形,ABA=10°,ABD=ABD=30°,AD=ABtanABD=1tan30°=2,OD=OAAD=82,点D(82,0); ()如图3,当点D在OA上时 由旋转知BDABDA,BA=BA=1,BAD=BAD=90° 点A在线段OA的中垂线上,BM=AN=OA=4,AM=2,AN=MNAM=ABAM=12,由BMA=AND=BAD=90°知BMAAND,则=,即=,解得:DN=35,则OD=ON+DN=4+35=31,D(31,0); 如图4,当点D在AO延长线上时,过点A作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,由旋转知BDABDA,BA=BA=1,BAD=BAD=90° 点A在线段OA的中垂线上,AM=AN=MN=4,则MC=BN=2,MO=MC+OC=2+1,由EMA=ANB=BAD=90°知EMAANB,则=,即=,解得:ME=,则OE=MOME=1+ DOE=AME=90°、OED=MEA,DOEAME,=,即=,解得:DO=3+1,则点D的坐标为(31,0) 综上,点D的坐标为(31,0)或(31,0)点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点24、小亮说的对,理由见解析【解析】先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.【详解】2(x+1)2(4x5)=2x2+4x+24x+5,=2x2+7,当x=时,原式=+7=7;当x=时,原式=+7=7故小亮说的对【点睛】本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.25、AB3.93m【解析】想求得AB长,由等腰三角形的三线合一定理可知AB2AD,求得AD即可,而AD可以利用A的三角函数可以求出【详解】ACBC,D是AB的中点,CDAB,又CD1米,A27°,ADCD÷tan27°1.96,AB2AD,AB3.93m【点睛】本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB26、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.【解析】此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷根据题意可得解得答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系27、2【解析】根据实数的混合运算法则进行计算.【详解】解:原式= -( -1)+1=- +1+1=2【点睛】此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.