四川省普通高中2023届高三考前热身数学试卷含解析.doc
-
资源ID:87996353
资源大小:2.74MB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省普通高中2023届高三考前热身数学试卷含解析.doc
2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则的子集共有( )A个B个C个D个2已知实数,函数在上单调递增,则实数的取值范围是( )ABCD3已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D54若函数的图象过点,则它的一条对称轴方程可能是( )ABCD5如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为( )A2B3C4D56已知奇函数是上的减函数,若满足不等式组,则的最小值为( )A-4B-2C0D47设双曲线(a0,b0)的一个焦点为F(c,0)(c0),且离心率等于,若该双曲线的一条渐近线被圆x2+y22cx0截得的弦长为2,则该双曲线的标准方程为( )ABCD8九章算术勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )ABCD9已知函数,若,则的取值范围是( )ABCD10已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为( )ABCD11在平行四边形中,若则( )ABCD12已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为( )AB3C2D二、填空题:本题共4小题,每小题5分,共20分。13如图所示梯子结构的点数依次构成数列,则_.14已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为_.15如图,在ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为_16如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,则双曲线的离心率是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系x0y中,把曲线为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.18(12分)已知不等式对于任意的恒成立.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.19(12分)如图,在三棱柱中, 平面ABC.(1)证明:平面平面(2)求二面角的余弦值.20(12分)如图,直三棱柱中,底面为等腰直角三角形,分别为,的中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.21(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.22(10分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.2、D【解析】根据题意,对于函数分2段分析:当,由指数函数的性质分析可得,当,由导数与函数单调性的关系可得,在上恒成立,变形可得,再结合函数的单调性,分析可得,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,当,若为增函数,则,当,若为增函数,必有在上恒成立,变形可得:,又由,可得在上单调递减,则,若在上恒成立,则有,若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,联立可得:.故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.3、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.4、B【解析】把已知点坐标代入求出,然后验证各选项【详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键5、A【解析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.6、B【解析】根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.7、C【解析】由题得,又,联立解方程组即可得,进而得出双曲线方程.【详解】由题得 又该双曲线的一条渐近线方程为,且被圆x2+y22cx0截得的弦长为2,所以 又 由可得:,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.8、C【解析】由题意知:,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.9、B【解析】对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.10、B【解析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.11、C【解析】由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示, 平行四边形中, , ,, 因为, 所以, ,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:()平行四边形法则(平行四边形的对角线分别是两向量的和与差);()三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).12、D【解析】本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,代入上式子中,得到,结合离心率满足,即可得出,故选D【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据图像归纳,根据等差数列求和公式得到答案.【详解】根据图像:,故,故.故答案为:.【点睛】本题考查了等差数列的应用,意在考查学生的计算能力和应用能力.14、【解析】求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为, 的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.15、【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是考点:向量的运算,基本不等式【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案16、【解析】根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.【详解】,为中点,垂直平分,即,即.故答案为:【点睛】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的普通方程为,的直角坐标方程为. (2)最小值为,此时【解析】(1)由的参数方程消去求得的普通方程,利用极坐标和直角坐标转化公式,求得的直角坐标方程.(2)设出点的坐标,利用点到直线的距离公式求得最小值的表达式,结合三角函数的指数求得的最小值以及此时点的坐标.【详解】(1)由题意知的参数方程为(为参数)所以的普通方程为.由得,所以的直角坐标方程为. (2)由题意,可设点的直角坐标为, 因为是直线,所以的最小值即为到的距离,因为 当且仅当时,取得最小值为,此时的直角坐标为即【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用曲线参数方程求解点到直线距离的最小值问题,属于中档题.18、(1)(2)证明见解析【解析】(1)法一:,得,则,由此可得答案;法二:由题意,令,易知是偶函数,且时为增函数,由此可得出答案;(2)由(1)知,即,结合“1”的代换,利用基本不等式即可证明结论【详解】解:(1)法一:(当且仅当时取等号),又(当且仅当时取等号),所以(当且仅当时取等号),由題意得,则,解得,故的取值范围是;法二:因为对于任意恒有成立,即,令,易知是偶函数,且时为增函数,所以,即,则,解得,故的取值范围是;(2)由(1)知,即,故不等式成立【点睛】本题主要考查绝对值不等式的恒成立问题,考查基本不等式的应用,属于中档题19、(1)证明见解析 (2)【解析】(1)证明平面即平面平面得证;(2)分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,再利用向量方法求二面角的余弦值.【详解】(1)证明:因为平面ABC,所以 因为.所以.即 又.所以平面 因为平面.所以平面平面 (2)解:由题可得两两垂直,所以分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,则,所以 设平面的一个法向量为,由.得令,得 又平面,所以平面的一个法向量为. 所以二面角的余弦值为.【点睛】本题主要考查空间几何位置关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平.20、(1)(2)【解析】(1)先证得,设与交于点,在中解直角三角形求得,由此求得的值.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)由题意,设与交于点,在中,可求得,则,可求得,则(2)以为原点,方向为轴,方向为轴,方向为轴,建立空间直角坐标系.,易得平面的法向量为.,易得平面的法向量为.设二面角为,由图可知为锐角,所以.即二面角的余弦值为.【点睛】本小题主要考查根据线面垂直求边长,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(1);(2)见解析【解析】(1)利用导数研究的单调性,分析函数性质,数形结合,即得解;(2)构造函数,可证得:,分析直线,与从左到右交点的横坐标,在,处的切线即得解.【详解】(1)设函数,令,令故在单调递减,在单调递增,时;时.(2)过点,的直线为,则令,.过点,的直线为,则,在上单调递增.设直线,与从左到右交点的横坐标依次为,由图知.在,处的切线分别为,同理可以证得,.记直线与两切线和从左到右交点的横坐标依次为,.【点睛】本题考查了函数与导数综合,考查了学生数形结合,综合分析,转化划归,逻辑推理,数学运算的能力,属于较难题.22、(1)答案不唯一,具体见解析(2)【解析】(1)分类讨论,利用导数的正负,可得函数的单调区间.(2)分离出参数后,转化为函数的最值问题解决,注意函数定义域.【详解】(1)由得或当时,由,得.由,得或此时的单调递减区间为,单调递增区间为和.当时,由,得由,得或此时的单调递减区间为,单调递增区间为和综上:当时,单调递减区间为,单调递增区间为和当时,的单调递减区间为,单调递增区间为和.(2)依题意,不等式恒成立等价于在上恒成立,可得,在上恒成立,设,则令,得,(舍)当时,;当时,当变化时,变化情况如下表:10单调递增单调递减当时,取得最大值,.的取值范围是.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究不等式的恒成立问题,属于中档题.