北京市十一校2022-2023学年中考数学全真模拟试题含解析.doc
-
资源ID:87996423
资源大小:500.50KB
全文页数:13页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
北京市十一校2022-2023学年中考数学全真模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1计算的结果为()ABCD2某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A168(1x)2108B168(1x2)108C168(12x)108D168(1+x)21083已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )A B C D4如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()ABCD5如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A甲B乙C丙D丁6如果,那么代数式的值是( )A6B2C-2D-67按一定规律排列的一列数依次为:,1,、,按此规律,这列数中的第100个数是()ABCD8共享单车为市民短距离出行带来了极大便利据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A259×104B25.9×105C2.59×106D0.259×1079根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k0),下列图象能正确反映p与v之间函数关系的是()ABCD10一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则NOF的度数为( )A50°B60°C70°D80°二、填空题(共7小题,每小题3分,满分21分)11把直线yx3向上平移m个单位后,与直线y2x4的交点在第一象限,则m的取值范围是_.12分解因式:x24=_13一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_14三角形的每条边的长都是方程的根,则三角形的周长是 15如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为_16比较大小: _1(填“”、“”或“”)17如图,AB=AC,要使ABEACD,应添加的条件是 (添加一个条件即可)三、解答题(共7小题,满分69分)18(10分)阅读材料,解答问题材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(3,9)开始,按点的横坐标依次增加1的规律,在抛物线yx2上向右跳动,得到点P2、P3、P4、P5(如图1所示)过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则SP1P2P3S梯形P1H1H3P3S梯形P1H1H2P2S梯形P2H2H3P3(9+1)×2(9+4)×1(4+1)×1,即P1P2P3的面积为1”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形Pn1PnPn+1Pn+2的面积,并说明理由(利用图2);(3)若将抛物线yx2改为抛物线yx2+bx+c,其它条件不变,猜想四边形Pn1PnPn+1Pn+2的面积(直接写出答案)19(5分)如图,在ABC 中,AB=AC,CD是ACB的平分线,DEBC,交AC于点 E求证:DE=CE 若CDE=35°,求A 的度数 20(8分)如图,在中,为边上的中线,于点E.求证:;若,求线段的长.21(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 请根据所给信息,解答以下问题: 表中 _ ;_ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF求证:四边形ACDF是平行四边形;当CF平分BCD时,写出BC与CD的数量关系,并说明理由23(12分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值24(14分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据分式的运算法则即可【详解】解:原式=,故选A.【点睛】本题主要考查分式的运算。2、A【解析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1故选A【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可3、B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: 抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,b0,交点横坐标为1,a+b+c=b,a+c=0,ac0,一次函数y=bx+ac的图象经过第一、三、四象限故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b0,ac0.4、B【解析】根据题意找到从左面看得到的平面图形即可【详解】这个立体图形的左视图是,故选:B【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置5、D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁故选D6、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】3a2+5a-1=0,3a2+5a=1,5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.7、C【解析】根据按一定规律排列的一列数依次为:,1,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、,型;分子为型,可得第100个数为【详解】按一定规律排列的一列数依次为:,1,按此规律,奇数项为负,偶数项为正,分母为3、7、9、,型;分子为型,可得第n个数为,当时,这个数为,故选:C【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.8、C【解析】绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.【详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【点睛】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.9、C【解析】【分析】根据题意有:pv=k(k为常数,k0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】pv=k(k为常数,k0)p=(p0,v0,k0),故选C【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限10、C【解析】解:OM=60海里,ON=80海里,MN=100海里,OM2+ON2=MN2,MON=90°,EOM=20°,NOF=180°20°90°=70°故选C【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键二、填空题(共7小题,每小题3分,满分21分)11、m>1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),交点在第一象限,解得:m1考点:一次函数图象与几何变换12、(x+2)(x2)【解析】【分析】直接利用平方差公式进行因式分解即可【详解】x24=x2-22=(x+2)(x2),故答案为:(x+2)(x2)【点睛】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反13、120°【解析】设扇形的半径为r,圆心角为n°利用扇形面积公式求出r,再利用弧长公式求出圆心角即可【详解】设扇形的半径为r,圆心角为n°由题意:,r4,n120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.14、6或2或12【解析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算【详解】由方程,得=2或1当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2综上所述此三角形的周长是6或12或215、【解析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可【详解】解:直角三角形的两条直角边的长分别为5,12,斜边为=13,三角形的面积=×5×12=×13h(h为斜边上的高),h=故答案为:【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键16、【解析】根据算术平方根的定义即可求解【详解】解:1,1,1故答案为【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数17、AE=AD(答案不唯一)【解析】要使ABEACD,已知AB=AC,A=A,则可以添加AE=AD,利用SAS来判定其全等;或添加B=C,利用ASA来判定其全等;或添加AEB=ADC,利用AAS来判定其全等等(答案不唯一)三、解答题(共7小题,满分69分)18、 (1)2,2;(2)2,理由见解析;(3)2【解析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P1H1H2P2和SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P3来求解;(2)(3)由图可知,Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,将四边形面积转化为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2来解答【详解】(1)作P5H5垂直于x轴,垂足为H5,由图可知SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P1H1H2P22,SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P32;(2)作Pn1Hn1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x轴,垂足为Hn1、Hn、Hn+1、Hn+2,由图可知Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,四边形Pn1PnPn+1Pn+2的面积为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn22;(3)S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2=-2【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,19、 (1)见解析;(2) 40°.【解析】(1)根据角平分线的性质可得出BCD=ECD,由DEBC可得出EDC=BCD,进而可得出EDC=ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出ECD=EDC=35°,进而可得出ACB=2ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出A的度数【详解】(1)CD是ACB的平分线,BCD=ECDDEBC,EDC=BCD,EDC=ECD,DE=CE(2)ECD=EDC=35°,ACB=2ECD=70°AB=AC,ABC=ACB=70°,A=180°70°70°=40°【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线解题的关键是:(1)根据平行线的性质结合角平分线的性质找出EDC=ECD;(2)利用角平分线的性质结合等腰三角形的性质求出ACB=ABC=70°20、(1)见解析;(2).【解析】对于(1),由已知条件可以得到B=C,ABC是等腰三角形,利用等腰三角形的性质易得ADBC,ADC=90°;接下来不难得到ADC=BED,至此问题不难证明;对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【详解】解:(1)证明:,.又为边上的中线,.,.(2),.在中,根据勾股定理,得.由(1)得,即,.【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.21、(1)0.3,45;(2);(3)【解析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:.考点:1、频数分布表,2、扇形统计图,3、概率22、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定FAECDE,即可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;(2)先判定CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD详解:(1)四边形ABCD是矩形,ABCD,FAE=CDE,E是AD的中点,AE=DE,又FEA=CED,FAECDE,CD=FA,又CDAF,四边形ACDF是平行四边形;(2)BC=2CD证明:CF平分BCD,DCE=45°,CDE=90°,CDE是等腰直角三角形,CD=DE,E是AD的中点,AD=2CD,AD=BC,BC=2CD点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的23、(1)y=50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【解析】(1)根据题意可以得到y关于x的函数解析式,本题得以解决;(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决【详解】(1)由题意可得,y=10×50(30x)+3100x50(30x)=50x+10500,即y与x的函数关系式为y=50x+10500;(2)由题意可得,得x,x是整数,y=50x+10500,当x=12时,y取得最大值,此时,y=50×12+10500=9900,30x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答24、(1)200元和100元(2)至少6件【解析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34a)件根据获得的利润不低于4000元,建立不等式求出其解即可【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由题意,得,解得:,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元(2)设购进A种商品a件,则购进B种商品(34a)件由题意,得200a+100(34a)4000,解得:a6答:威丽商场至少需购进6件A种商品