四川省宜宾市叙州区2023届中考冲刺卷数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A赚了10元B赔了10元C赚了50元D不赔不赚2若,则的值为( )A6 B6 C18 D303如图,在矩形ABCD中,AB=2,BC=1若点E是边CD的中点,连接AE,过点B作BFAE交AE于点F,则BF的长为()ABCD4如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A25:24B16:15C5:4D4:35如图,在菱形ABCD中,AB=5,BCD=120°,则ABC的周长等于( )A20B15C10D56如图,在ABC中,CAB75°,在同一平面内,将ABC绕点A逆时针旋转到ABC的位置,使得CCAB,则CAC为()A30°B35°C40°D50°7有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC8如图,在正方形ABCD中,AB,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是()ABCD9如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米ABC+1D310下列实数0,其中,无理数共有()A1个B2个C3个D4个11在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A众数B中位数C平均数D方差12如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A(a+b)(ab)a2b2B(ab)2a22ab+b2C(a+b)2a2+2ab+b2D(a+b)2(ab)2+4ab二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为_cm 14如图,矩形ABCD面积为40,点P在边CD上,PEAC,PFBD,足分别为E,F若AC10,则PE+PF_15已知ab=2,ab=3,则a3b2a2b2+ab3的值为_16计算:3130_.17O的半径为10cm,AB,CD是O的两条弦,且ABCD,AB=16cm,CD=12cm则AB与CD之间的距离是 cm18分解因式:x21=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(精确到0.1米,参考数据:)20(6分)解方程:121(6分)如图,矩形ABCD为台球桌面,AD260cm,AB130cm,球目前在E点位置,AE60cm如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置求BF的长22(8分)2019年8月山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态太职学院足球场作为一个重要比赛场馆占地面积约24300平方米总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了结来比原计划提前4天完成安装任务求原计划每天安装多少个座位23(8分)观察下列等式:1×5+4=32;2×6+4=42;3×7+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立24(10分)阅读下面材料,并解答问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式解:由分母为x2+1,可设x4x2+3=(x2+1)(x2+a)+b则x4x2+3=(x2+1)(x2+a)+b=x4ax2+x2+a+b=x4(a1)x2+(a+b)对应任意x,上述等式均成立,a=2,b=1=+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式试说明的最小值为125(10分)如图,点C、E、B、F在同一直线上,ACDF,ACDF,BCEF,求证:AB=DE26(12分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有_人,在扇形统计图中,“乒乓球”的百分比为_%,如果学校有800名学生,估计全校学生中有_人喜欢篮球项目(2)请将条形统计图补充完整(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率27(12分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)C= °;(2)此时刻船与B港口之间的距离CB的长(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(120%)=100元,则80×2(50+100)=10元,即盈利10元.考点:一元一次方程的应用2、B【解析】试题分析:,即,原式=12+18=1故选B考点:整式的混合运算化简求值;整体思想;条件求值3、B【解析】根据SABE=S矩形ABCD=1=AEBF,先求出AE,再求出BF即可【详解】如图,连接BE四边形ABCD是矩形,AB=CD=2,BC=AD=1,D=90°,在RtADE中,AE=,SABE=S矩形ABCD=1=AEBF,BF=故选:B【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型4、A【解析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出RtAHERtCFG,再由勾股定理及直角三角形的面积公式即可解答【详解】1=2,3=4,2+3=90°,HEF=90°,同理四边形EFGH的其它内角都是90°,四边形EFGH是矩形,EH=FG(矩形的对边相等),又1+4=90°,4+5=90°,1=5(等量代换),同理5=7=8,1=8,RtAHERtCFG,AH=CF=FN,又HD=HN,AD=HF,在RtHEF中,EH=3,EF=4,根据勾股定理得HF=5,又HEEF=HFEM,EM=,又AE=EM=EB(折叠后A、B都落在M点上),AB=2EM=,AD:AB=5:=25:1故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等5、B【解析】ABCD是菱形,BCD=120°,B=60°,BA=BCABC是等边三角形ABC的周长=3AB=1故选B6、A【解析】根据旋转的性质可得AC=AC,BAC=BAC',再根据两直线平行,内错角相等求出ACC=CAB,然后利用等腰三角形两底角相等求出CAC,再求出BAB=CAC,从而得解【详解】CCAB,CAB75°,CCACAB75°,又C、C为对应点,点A为旋转中心,ACAC,即ACC为等腰三角形,CAC180°2CCA30°故选A【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键7、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.8、B【解析】在正方形ABCD中, AB=,AC4,ADDC,DAPDCA45o,当点Q在AD上时,PAPQ,DP=AP=x,S ;当点Q在DC上时,PCPQCP4x,S;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况9、C【解析】由题意可知,AC=1,AB=2,CAB=90°据勾股定理则BC=m;AC+BC=(1+)m. 答:树高为(1+)米故选C.10、B【解析】根据无理数的概念可判断出无理数的个数【详解】解:无理数有:,.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数11、B【解析】解:11人成绩的中位数是第6名的成绩参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可故选B【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键12、B【解析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答【详解】图1中阴影部分的面积为:(ab)2;图2中阴影部分的面积为:a22ab+b2;(ab)2a22ab+b2,故选B【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、20【解析】解:=20cm故答案为20cm14、4【解析】由矩形的性质可得AO=CO=5=BO=DO,由SDCO=SDPO+SPCO,可得PE+PF的值【详解】解:如图,设AC与BD的交点为O,连接PO,四边形ABCD是矩形AO=CO=5=BO=DO,SDCO=S矩形ABCD=10,SDCO=SDPO+SPCO,10=×DO×PF+×OC×PE20=5PF+5PEPE+PF=4故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键15、18【解析】要求代数式a3b2a2b2+ab3的值,而代数式a3b2a2b2+ab3恰好可以分解为两个已知条件ab,(ab)的乘积,因此可以运用整体的数学思想来解答【详解】a3b2a2b2+ab3=ab(a22ab+b2)=ab(ab)2,当ab=3,ab=2时,原式=2×32=18,故答案为:18.【点睛】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.16、.【解析】原式利用零指数幂、负整数指数幂法则计算即可求出值【详解】原式1.故答案是:.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键17、2或14【解析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】当弦AB和CD在圆心同侧时,如图,AB=16cm,CD=12cm,AE=8cm,CF=6cm,OA=OC=10cm,EO=6cm,OF=8cm,EF=OFOE=2cm;当弦AB和CD在圆心异侧时,如图,AB=16cm,CD=12cm,AF=8cm,CE=6cm,OA=OC=10cm,OF=6cm,OE=8cm,EF=OF+OE=14cm.AB与CD之间的距离为14cm或2cm.故答案为:2或14.18、(x+1)(x1)【解析】试题解析:x21=(x+1)(x1)考点:因式分解运用公式法三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、5.5米【解析】过点C作CDAB于点D,设CD=x,在RtACD中表示出AD,在RtBCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【详解】解:过点C作CDAB于点D,设CD=x,在RtACD中,CAD=30°,则AD=CD=x.在RtBCD中,CBD=45°,则BD=CD=x.由题意得,xx=4,解得:.答:生命所在点C的深度为5.5米.20、【解析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】原方程变形为,方程两边同乘以(2x1),得2x51(2x1),解得 检验:把代入(2x1),(2x1)0,是原方程的解,原方程的【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.21、BF的长度是1cm【解析】利用“两角法”证得BEFCDF,利用相似三角形的对应边成比例来求线段CF的长度【详解】解:如图,在矩形ABCD中:DFCEFB,EBFFCD90°,BEFCDF;,又ADBC260cm ,ABCD130cm ,AE60cmBE70cm, CD130cm,BC260cm ,CF(260BF)cm,解得:BF1即:BF的长度是1cm【点睛】本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等22、原计划每天安装100个座位【解析】根据题意先设原计划每天安装x个座位,列出方程再求解.【详解】解:设原计划每天安装个座位,采用新技术后每天安装个座位, 由题意得: 解得: 经检验:是原方程的解 答:原计划每天安装100个座位【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.23、6×10+4=82 48×52+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:n×(n+4)+4=n2+4n+4=(n+2)2,n×(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法24、 (1) =x2+7+ (2) 见解析【解析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可【详解】(1)设x46x+1=(x2+1)(x2+a)+b=x4+(1a)x2+a+b,可得 ,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+ x20,x2+77;当x=0时,取得最小值0,当x=0时,x2+7+最小值为1,即原式的最小值为125、证明见解析【解析】证明:AC/DF 在和中 ABCDEF(SAS)26、(1)5,20,80;(2)图见解析;(3).【解析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得;(3)用800乘以喜欢篮球人数所占的比例即可得;(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【详解】(1)调查的总人数为20÷40%=50(人),喜欢篮球项目的同学的人数=50201015=5(人);(2)“乒乓球”的百分比=20%;(3)800×=80,所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=27、(1)60;(2)【解析】(1)由平行线的性质以及方向角的定义得出FBA=EAB=30°,FBC=75°,那么ABC=45°,又根据方向角的定义得出BAC=BAE+CAE=75°,利用三角形内角和定理求出C=60°;(2)作ADBC交BC于点D,解RtABD,得出BD=AD=30,解RtACD,得出CD=10,根据BC=BD+CD即可求解.解:(1)如图所示,EAB=30°,AEBF,FBA=30°,又FBC=75°,ABC=45°,BAC=BAE+CAE=75°,C=60°故答案为60; (2)如图,作ADBC于D, 在RtABD中,ABD=45°,AB=60,AD=BD=30 在RtACD中,C=60°,AD=30,tanC=,CD=10, BC=BD+CD=30+10答:该船与B港口之间的距离CB的长为(30+10)海里