四川省南充市第一中学2023年高三第一次调研测试数学试卷含解析.doc
-
资源ID:87996825
资源大小:1.60MB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省南充市第一中学2023年高三第一次调研测试数学试卷含解析.doc
2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若成立,则的最小值为( )A0B4CD2在中,角、所对的边分别为、,若,则( )ABCD3为得到函数的图像,只需将函数的图像( )A向右平移个长度单位B向右平移个长度单位C向左平移个长度单位D向左平移个长度单位4已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为ABCD5二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A180B90C45D3606设函数是奇函数的导函数,当时,则使得成立的的取值范围是( )ABCD7大衍数列,米源于我国古代文献乾坤谱中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,则大衍数列中奇数项的通项公式为( )ABCD8已知平面向量,满足:,则的最小值为( )A5B6C7D89年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为ABCD10已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是( )ABCD111若复数,则( )ABCD2012设为非零向量,则“”是“与共线”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知三棱锥的四个顶点都在球O的球面上,E,F分别为,的中点,则球O的体积为_.14已知实数,满足约束条件,则的最大值是_.15下图是一个算法流程图,则输出的S的值是_.16已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知中,是上一点(1)若,求的长;(2)若,求的值18(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程以及曲线的直角坐标方程;(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.19(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.20(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.21(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围22(10分)设数列,其前项和,又单调递增的等比数列, , .()求数列,的通项公式;()若 ,求数列的前n项和,并求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】令,进而求得,再转化为函数的最值问题即可求解.【详解】(),令:,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.2、D【解析】利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.3、D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D4、C【解析】将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为故选C5、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,令,则,.考点:1.二项式定理;2.组合数的计算.6、D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x(0,1)时,g(x)>0,lnx<0,f(x)<0,(x2-1)f(x)>0;当x(1,+)时,g(x)<0,lnx>0,f(x)<0,(x2-1)f(x)<0f(x)是奇函数,当x(-1,0)时,f(x)>0,(x2-1)f(x)<0当x(-,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效7、B【解析】直接代入检验,排除其中三个即可【详解】由题意,排除D,排除A,C同时B也满足,故选:B【点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解8、B【解析】建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,且,由于,所以.所以,即.当且仅当时取得最小值,此时由得,当时,有最小值为,即,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.9、B【解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B10、B【解析】先根据导数的几何意义写出 在 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数 ,结合导数求出最小值,即可选出正确答案.【详解】解:当 时,则;当时,则.设 为函数图像上的两点,当 或时,不符合题意,故.则在 处的切线方程为;在 处的切线方程为.由两切线重合可知 ,整理得.不妨设则 ,由 可得则当时, 的最大值为.则在 上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出 和 的函数关系式.本题的易错点是计算.11、B【解析】化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.12、A【解析】根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】可证,则为的外心,又则平面即可求出,的值,再由勾股定理求出外接球的半径,最后根据体积公式计算可得.【详解】解:,因为为的中点,所以为的外心,因为,所以点在内的投影为的外心,所以平面,平面,所以,所以,又球心在上,设,则,所以,所以球O体积,.故答案为:【点睛】本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,属于中档题14、【解析】令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.【点睛】本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.15、【解析】根据流程图,运行程序即得.【详解】第一次运行,;第二次运行,;第三次运行,;第四次运行;所以输出的S的值是.故答案为:【点睛】本题考查算法流程图,是基础题.16、【解析】求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可【详解】解:双曲线的右准线,渐近线,双曲线的右准线与渐近线的交点,交点在抛物线上,可得:,解得故答案为【点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1) (2)【解析】(1)运用三角形面积公式求出的长度,然后再运用余弦定理求出的长.(2)运用正弦定理分别表示出和,结合已知条件计算出结果.【详解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【点睛】本题考查了正弦定理、三角形面积公式以及余弦定理,结合三角形熟练运用各公式是解题关键,此类题目是常考题型,能够运用公式进行边角互化,需要掌握解题方法.18、(1)的极坐标方程为,的直角坐标方程为(2)【解析】(1)先把曲线的参数方程消参后,转化为普通方程,再利用 求得极坐标方程.将,化为,再利用 求得曲线的普通方程.(2)设直线的极角,代入,得,将代入,得,由,得,即,从而求得,从而求得,再利用求解.【详解】(1)依题意,曲线,即,故,即.因为,故,即,即.(2)将代入,得,将代入,得,由,得,得,解得,则.又,故,故的面积.【点睛】本题考查极坐标方程与直角坐标方程、参数方程与普通方程的转化、极坐标的几何意义,还考查推理论证能力以及数形结合思想,属于中档题.19、(1),;(2).【解析】(1)利用公式即可求得曲线的极坐标方程;联立直线和曲线的极坐标方程,即可求得交点坐标;(2)设出点坐标的参数形式,将问题转化为求三角函数最值的问题即可求得.【详解】(1)曲线的极坐标方程: 联立,得,又因为都满足两方程,故两曲线的交点为,.(2)易知,直线. 设点,则点到直线的距离(其中). 面积的最大值为.【点睛】本题考查极坐标方程和直角坐标方程之间的相互转化,涉及利用椭圆的参数方程求面积的最值问题,属综合中档题.20、(1);(2);(3) 【解析】(1)依题意,得,由此能求出椭圆C的方程.(2)点与点关于轴对称,设,设,由于点在椭圆C上,故,由,知,由此能求出圆T的方程.(3)设,则直线MP的方程为:,令,得,同理:,由此能证明为定值.【详解】(1)依题意,得,故椭圆C的方程为.(2)点与点关于轴对称,设,设,由于点在椭圆C上,所以,由,则, .由于,故当时,的最小值为,所以,故,又点在圆T上,代入圆的方程得到.故圆T的方程为:(3)设,则直线MP的方程为:,令,得,同理:.故 又点与点在椭圆上,故,代入上式得: ,所以【点睛】本题考查了椭圆的几何性质、圆的轨迹方程、直线与椭圆的位置关系中定值问题,考查了学生的计算能力,属于中档题.21、(1).(2).【解析】试题分析:()通过讨论x的范围,得到关于x的不等式组,解出取并集即可;()求出f(x)的最大值,得到关于a的不等式,解出即可试题解析:(1)不等式等价于或或,解得或,所以不等式的解集是;(2),解得实数的取值范围是点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向22、(1),;(2)详见解析.【解析】(1)当时,当时,当时,也满足,等比数列,又,或(舍去),;(2)由(1)可得:,显然数列是递增数列,即.)