吉林省长春市名校调研系列卷(市命题)2023年中考数学对点突破模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是 A180个,160个B170个,160个C170个,180个D160个,200个2据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A9.29×109B9.29×1010C92.9×1010D9.29×10113如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()ABCD4学校小组名同学的身高(单位:)分别为:,则这组数据的中位数是( )ABCD5如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且ABCGEF;弯道为以点O为圆心的一段弧,且,所对的圆心角均为90°甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示结合题目信息,下列说法错误的是()A甲车在立交桥上共行驶8sB从F口出比从G口出多行驶40mC甲车从F口出,乙车从G口出D立交桥总长为150m6某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是()A0.15B0.2C0.25D0.37如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )ABCD8如图,反比例函数y的图象与直线yx的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则ABC的面积为( )A8 B6 C4 D29如右图,ABC内接于O,若OAB=28°则C的大小为( )A62°B56°C60°D28°10方程的解是( ).ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,已知矩形ABCD中,点E是BC边上的点,BE2,EC1,AEBC,DFAE,垂足为F则下列结论:ADFEAB;AFBE;DF平分ADC;sinCDF其中正确的结论是_(把正确结论的序号都填上)12写出一个经过点(1,2)的函数表达式_13如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DEEA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_m14若a22a4=0,则5+4a2a2=_15如图,反比例函数y(x0)的图象经过点A(2,2),过点A作ABy轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A1+B4+C4D-1+16将多项式xy24xy+4y因式分解:_17若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是_三、解答题(共7小题,满分69分)18(10分)如图,已知二次函数的图象经过,两点求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,求的面积19(5分)(14分)如图,在平面直角坐标系中,抛物线y=mx28mx+4m+2(m2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2x1=4,直线ADx轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q(1)求抛物线的解析式;(2)当0t8时,求APC面积的最大值;(3)当t2时,是否存在点P,使以A、P、Q为顶点的三角形与AOB相似?若存在,求出此时t的值;若不存在,请说明理由20(8分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率21(10分)如图,在等边ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE求证:AEBC22(10分)已知函数的图象与函数的图象交于点.(1)若,求的值和点P的坐标;(2)当时,结合函数图象,直接写出实数的取值范围.23(12分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m当起重臂 AC 长度为 8 m,张角HAC 为 118°时,求操作平台 C 离地面的高度(果保留小数点后一位,参考数据:sin28°0.47,cos28°0.88,tan28°0.53)24(14分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:级、级、级、级将收集的数据绘制成如下两幅不完整的统计图请根据图中提供的信息,解答下列问题:()请补全上面的条形图()所抽查学生“诵读经典”时间的中位数落在_级()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据中位数和众数的定义分别进行解答即可【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数2、B【解析】科学记数法的表示形式为a×1n的形式,其中1|a|1,n为整数确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1【详解】解:929亿=92900000000=9.29×11故选B【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键3、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可【详解】解:ABBD,CDBD,EFBD,ABCDEFABEDCE,故选项B正确,EFAB,故选项C,D正确,故选:A【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型4、C【解析】根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.5、C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.C.分析图2可知甲车从G口出,乙车从F口出,故错误.D.立交桥总长为:故正确.故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.6、B【解析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,故选B.7、A【解析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式【详解】解:大正方形的面积-小正方形的面积=,矩形的面积=,故,故选:A【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键8、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则ABC的面积=2|k|=2×4=1故选A考点:反比例函数系数k的几何意义9、A【解析】连接OB在OAB中,OA=OB(O的半径),OAB=OBA(等边对等角);又OAB=28°,OBA=28°;AOB=180°-2×28°=124°;而C=AOB(同弧所对的圆周角是所对的圆心角的一半),C=62°;故选A10、B【解析】直接解分式方程,注意要验根.【详解】解:=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=,经检验,x=是原方程的解.故选B.【点睛】本题考查了解分式方程,解分式方程不要忘记验根.二、填空题(共7小题,每小题3分,满分21分)11、【解析】只要证明EABADF,CDF=AEB,利用勾股定理求出AB即可解决问题【详解】四边形ABCD是矩形,AD=BC,ADBC,B=90°,BE=2,EC=1,AE=AD=BC=3,AB=,ADBC,DAF=AEB,DFAE,AFD=B=90°,EABADF,AF=BE=2,DF=AB=,故正确,不妨设DF平分ADC,则ADF是等腰直角三角形,这个显然不可能,故错误,DAF+ADF=90°,CDF+ADF=90°,DAF=CDF,CDF=AEB,sinCDF=sinAEB=,故错误,故答案为【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12、y=x+1(答案不唯一)【解析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式答案不唯一【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,答案不唯一.故答案可以是:y=x+1(答案不唯一).【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.13、1【解析】先根据CD=20米,DE=10m得出DCE=30°,故可得出DCB=90°,再由BDF=30°可知DBE=60°,由DFAE可得出BGF=BCA=60°,故GBF=30°,所以DBC=30°,再由锐角三角函数的定义即可得出结论【详解】解:作DFAB于F,交BC于G则四边形DEAF是矩形,DE=AF=15m,DFAE, BGF=BCA=60°,BGF=GDB+GBD=60°,GDB=30°,GDB=GBD=30°,GD=GB,在RtDCE中,CD=2DE,DCE=30°,DCB=90°,DGC=BGF,DCG=BFG=90°DGCBGF,BF=DC=30m,AB=30+15=1(m),故答案为1【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键14、-3【解析】试题解析: 即 原式 故答案为 15、A【解析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断OAB为等腰直角三角形,所以AOB=45°,再利用PQOA可得到OPQ=45°,然后轴对称的性质得PB=PB,BBPQ,所以BPQ=BPQ=45°,于是得到BPy轴,则点B的坐标可表示为(-,t),于是利用PB=PB得t-2=|-|=,然后解方程可得到满足条件的t的值【详解】如图,点A坐标为(-2,2),k=-2×2=-4,反比例函数解析式为y=-,OB=AB=2,OAB为等腰直角三角形,AOB=45°,PQOA,OPQ=45°,点B和点B关于直线l对称,PB=PB,BBPQ,BPQ=OPQ=45°,BPB=90°,BPy轴,点B的坐标为(- ,t),PB=PB,t-2=|-|=,整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),t的值为故选A【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程16、y(xy4x+4)【解析】直接提公因式y即可解答.【详解】xy24xy+4y=y(xy4x+4)故答案为:y(xy4x+4)【点睛】本题考查了因式分解提公因式法,确定多项式xy24xy+4y的公因式为y是解决问题的关键.17、m2【解析】试题分析:有函数的图象在其所在的每一象限内,函数值y随自变量x的增大而减小可得m-2>0,解得m>2,考点:反比例函数的性质.三、解答题(共7小题,满分69分)18、见解析【解析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】(1)把,代入得,解得.这个二次函数解析式为.(2)抛物线对称轴为直线,的坐标为,.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式19、(1);(2)12;(3)t=或t=或t=1【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0t6时和6t8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2t6时和t6时两种情况进行讨论,再根据三角形相似的条件,即可得解试题解析:解:(1)由题意知x1、x2是方程mx28mx+4m+2=0的两根,x1+x2=8,由解得:B(2,0)、C(6,0)则4m16m+4m+2=0,解得:m=,该抛物线解析式为:y=;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,直线AC的解析式为:y=x+3,要构成APC,显然t6,分两种情况讨论:当0t6时,设直线l与AC交点为F,则:F(t,),P(t,),PF=,SAPC=SAPF+SCPF=,此时最大值为:,当6t8时,设直线l与AC交点为M,则:M(t,),P(t,),PM=,SAPC=SAPFSCPF=,当t=8时,取最大值,最大值为:12,综上可知,当0t8时,APC面积的最大值为12;(3)如图,连接AB,则AOB中,AOB=90°,AO=3,BO=2,Q(t,3),P(t,),当2t6时,AQ=t,PQ=,若:AOBAQP,则:,即:,t=0(舍),或t=,若AOBPQA,则:,即:,t=0(舍)或t=2(舍),当t6时,AQ=t,PQ=,若:AOBAQP,则:,即:,t=0(舍),或t=,若AOBPQA,则:,即:,t=0(舍)或t=1,t=或t=或t=1考点:二次函数综合题20、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.21、见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,B=ACB=60°,根据旋转的性质得出CD=CE,DCE=60°,求出BCD=ACE,根据SAS推出BCDACE,根据全等得出EAC=B=60°,求出EAC=ACB,根据平行线的判定得出即可.试题解析:ABC是等边三角形,AC=BC,B=ACB=60°,线段CD绕点C顺时针旋转60°得到CE,CD=CE,DCE=60°,DCE=ACB,即BCD+DCA=DCA+ACE,BCD=ACE,在BCD与ACE中,BCDACE,EAC=B=60°,EAC=ACB,AEBC.22、(1),或;(2) .【解析】【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;(2)画出两个函数的图象,观察函数的图象即可得.【详解】(1)函数的图象交于点,n=mk,m=2n,n=2nk,k=,直线解析式为:y=x,解方程组,得,交点P的坐标为:(,)或(-,-); (2)由题意画出函数的图象与函数的图象如图所示,函数的图象与函数的交点P的坐标为(m,n),当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,当k>1时,结合图象可知此时|m|<|n|,当时,1.【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.23、5.8【解析】过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可【详解】解:如图,过点作于点,过点作于点, 又, 四边形为矩形 在中, 答:操作平台离地面的高度约为【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算24、)补全的条形图见解析()级()【解析】试题分析:(1)根据级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级;(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人试题解析: (1)本次随机抽查的人数为:20÷40%=50(人)三级人数为:50-13-20-7=10.补图如下:(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有