山东省德州地区重点中学2023年中考数学模拟预测题含解析.doc
-
资源ID:87997051
资源大小:555KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省德州地区重点中学2023年中考数学模拟预测题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1的相反数是A4BCD2已知反比例函数y,当3x2时,y的取值范围是()A0y1B1y2C2y3D3y232017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )A1.35×106B1.35×105C13.5×104D135×1034如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PMCD,PNBC,则线段MN的长度的最小值为( )ABCD15如图,平行于BC的直线DE把ABC分成面积相等的两部分,则的值为()A1BC-1D+16如图,已知在ABC,ABAC若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()AAEECBAEBECEBCBACDEBCABE7若一个正比例函数的图象经过A(3,6),B(m,4)两点,则m的值为( )A2B8C2D88小明解方程的过程如下,他的解答过程中从第()步开始出现错误解:去分母,得1(x2)1去括号,得1x+21合并同类项,得x+31移项,得x2系数化为1,得x2ABCD9如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CHAF与点H,那么CH的长是( ) ABCD10一个几何体的三视图如图所示,则该几何体的形状可能是()A BC D二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在反比例函数y=(x0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为2,4,6,8,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,Sn,则S1+S2+S3+Sn=_(用含n的代数式表示)12若a2+32b,则a32ab+3a_13如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_14如图,ABC中,AD是中线,AE是角平分线,CFAE于F,AB=10,AC=6,则DF的长为_15一元二次方程x2=3x的解是:_16如图,ABC中,AB=AC,以AC为斜边作RtADC,使ADC=90°,CAD=CAB=26°,E、F分别是BC、AC的中点,则EDF等于_°三、解答题(共8题,共72分)17(8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在1665岁之间的居民,进行了400个电话抽样调查并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是 岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出3140岁年龄段的满意人数,并补全图1注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%18(8分)如图,AD是ABC的中线,AD12,AB13,BC10,求AC长19(8分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:设(其中均为整数),则有这样小明就找到了一种把部分的式子化为平方式的方法请你仿照小明的方法探索并解决下列问题:当均为正整数时,若,用含m、n的式子分别表示,得 , ;(2)利用所探索的结论,找一组正整数,填空: ( )2;(3)若,且均为正整数,求的值20(8分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元若该公司对此项计划的投资不低于1536万元,不高于1552万元请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)21(8分)在平面直角坐标系中,已知直线yx+4和点M(3,2)(1)判断点M是否在直线yx+4上,并说明理由;(2)将直线yx+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;(3)另一条直线ykx+b经过点M且与直线yx+4交点的横坐标为n,当ykx+b随x的增大而增大时,则n取值范围是_22(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?23(12分)计算:22+2cos60°+(3.14)0+(1)201824已知函数y=(x0)的图象与一次函数y=ax2(a0)的图象交于点A(3,n)(1)求实数a的值;(2)设一次函数y=ax2(a0)的图象与y轴交于点B,若点C在y轴上,且SABC=2SAOB,求点C的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案【详解】-1的相反数为1,则1的绝对值是1故选A【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键2、C【解析】分析:由题意易得当3x2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.详解:在中,60,当3x2时函数的图象位于第二象限内,且y随x的增大而增大,当x=3时,y=2,当x=2时,y=3,当3x2时,2y3,故选C点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.3、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:135000=1.35×105故选B【点睛】此题考查科学记数法表示较大的数科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、B【解析】分析:由于点P在运动中保持APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可详解: 由于点P在运动中保持APD=90°, 点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在RtQDC中,QC=, CP=QCQP=,故选B点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型解决这个问题的关键是根据圆的知识得出点P的运动轨迹5、C【解析】【分析】由DEBC可得出ADEABC,利用相似三角形的性质结合SADE=S四边形BCED,可得出,结合BD=ABAD即可求出的值【详解】DEBC,ADE=B,AED=C,ADEABC,SADE=S四边形BCED,SABC=SADE+S四边形BCED,故选C【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键6、C【解析】解:AB=AC,ABC=ACB以点B为圆心,BC长为半径画弧,交腰AC于点E,BE=BC,ACB=BEC,BEC=ABC=ACB,BAC=EBC故选C点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大7、A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,6)代入可得:3k=6,解得:k=2,函数解析式为:y=2x,将B(m,4)代入可得:2m=4,解得m=2,故选A考点:一次函数图象上点的坐标特征8、A【解析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题【详解】=1,去分母,得1-(x-2)=x,故错误,故选A【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法9、D【解析】连接AC、CF,根据正方形性质求出AC、CF,ACD=GCF=45°,再求出ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.【详解】如图,连接AC、CF,正方形ABCD和正方形CEFG中,BC=1,CE=3,AC= ,CF=3,ACD=GCF=45°,ACF=90°,由勾股定理得,AF=,CHAF,即,CH=.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键10、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为故选D考点:由三视图判断几何体视频二、填空题(本大题共6个小题,每小题3分,共18分)11、10【解析】过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案【详解】如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,则点Pn+1的坐标为(2n+2,),则OB=,点P1的横坐标为2,点P1的纵坐标为5,AB=5,S1+S2+S3+Sn=S矩形AP1DB=2(5)=10,故答案为10【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.12、1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值【详解】解:a2+3=2b,a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键13、 【解析】由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明DGFDAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可【详解】四边形ABCD、CEFG均为正方形,CD=AD=3,CG=CE=5,DG=2,在RtDGF中, DF=,FDG+GDI=90°,GDI+IDA=90°,FDG=IDA又DAI=DGF,DGFDAI,即,解得:DI=,矩形DFHI的面积是=DFDI=,故答案为:【点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键14、1【解析】试题分析:如图,延长CF交AB于点G,在AFG和AFC中,GAF=CAF,AF=AF,AFG=AFC,AFGAFC(ASA)AC=AG,GF=CF又点D是BC中点,DF是CBG的中位线DF=BG=(ABAG)=(ABAC)=115、x1=0,x2=1【解析】先移项,然后利用因式分解法求解【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,x1=0,x2=1故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解16、【解析】 E、F分别是BC、AC的中点. , CAB=26° 又 CAD =26° !三、解答题(共8题,共72分)17、(1)1130;(1)3140岁年龄段的满意人数为66人,图见解析;【解析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图可得1130岁的人数所占百分比最大为39%,所以,人数最多的年龄段是1130岁;(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,3140岁年龄段的满意人数为:3315411653149=331116=66人,补全统计图如图【点睛】本题考点:条形统计图与扇形统计图.18、2.【解析】根据勾股定理逆定理,证ABD是直角三角形,得ADBC,可证AD垂直平分BC,所以AB=AC.【详解】解:AD是ABC的中线,且BC=10,BD=BC=112+122=22,即BD2+AD2=AB2,ABD是直角三角形,则ADBC,又CD=BD,AC=AB=2【点睛】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.19、(1),;(2)2,2,1,1(答案不唯一);(3)7或1【解析】(1),am23n2,b2mn故答案为m23n2,2mn(2)设m1,n2,am23n21,b2mn2故答案为1,2,1,2(答案不唯一)(3)由题意,得am23n2,b2mn22mn,且m、n为正整数,m2,n1或m1,n2,a223×127,或a123×22120、(1)共有三种方案,分别为A型号16辆时, B型号24辆;A型号17辆时,B型号23辆;A型号18辆时,B型号22辆;(2)当时,万元;(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案【解析】(1)设A型号的轿车为x辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式解答;(3)根据(2)中方案设计计算.【详解】(1)设生产A型号x辆,则B型号(40-x)辆153634x+42(40-x)1552解得,x可以取值16,17,18共有三种方案,分别为A型号16辆时, B型号24辆A型号17辆时,B型号23辆A型号18辆时,B型号22辆(2)设总利润W万元则W= =w随x的增大而减小当时,万元(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.21、(1)点M(1,2)不在直线y=x+4上,理由见解析;(2)平移的距离为1或2;(1)2n1【解析】(1)将x=1代入y=-x+4,求出y=-1+4=12,即可判断点M(1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b分两种情况进行讨论:点M(1,2)关于x轴的对称点为点M1(1,-2);点M(1,2)关于y轴的对称点为点M2(-1,2)分别求出b的值,得到平移的距离;(1)由直线y=kx+b经过点M(1,2),得到b=2-1k由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=根据y=kx+b随x的增大而增大,得到k0,即0,那么,或,分别解不等式组即可求出n的取值范围【详解】(1)点M不在直线y=x+4上,理由如下:当x=1时,y=1+4=12,点M(1,2)不在直线y=x+4上;(2)设直线y=x+4沿y轴平移后的解析式为y=x+4+b点M(1,2)关于x轴的对称点为点M1(1,2),点M1(1,2)在直线y=x+4+b上,2=1+4+b,b=1,即平移的距离为1;点M(1,2)关于y轴的对称点为点M2(1,2),点M2(1,2)在直线y=x+4+b上,2=1+4+b,b=2,即平移的距离为2综上所述,平移的距离为1或2;(1)直线y=kx+b经过点M(1,2),2=1k+b,b=21k直线y=kx+b与直线y=x+4交点的横坐标为n,y=kn+b=n+4,kn+21k=n+4,k=y=kx+b随x的增大而增大,k0,即0,或,不等式组无解,不等式组的解集为2n1n的取值范围是2n1故答案为2n1【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握22、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答23、-1【解析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值【详解】解:原式4+1+1+11【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键24、(1)a=1;(2)C(0,4)或(0,0)【解析】(1)把 A(3,n)代入y=(x0)求得 n 的值,即可得A点坐标, 再把A点坐标代入一次函数 y=ax2 可得 a 的值;(2)先求出一次函数 y=ax2(a0)的图象与 y 轴交点 B 的坐标,再分两种情况(当C点在y轴的正半轴上或原点时;当C点在y轴的负半轴上时)求点C的坐标即可【详解】(1)函数 y=(x0)的图象过(3,n),3n=3,n=1,A(3,1)一次函数 y=ax2(a0)的图象过点 A(3,1),1=3a1, 解得 a=1;(2)一次函数y=ax2(a0)的图象与 y 轴交于点 B,B(0,2),当C点在y轴的正半轴上或原点时, 设 C(0,m),SABC=2SAOB,×(m+2)×3=2××3, 解得:m=0,当C点在 y 轴的负半轴上时, 设(0,h),SABC=2SAOB,×(2h)×3=2××3, 解得:h=4,C(0,4)或(0,0)【点睛】本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解