四川省成都七中实验学校2023年高三最后一卷数学试卷含解析.doc
-
资源ID:87997090
资源大小:2.73MB
全文页数:23页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省成都七中实验学校2023年高三最后一卷数学试卷含解析.doc
2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1命题“”的否定为( )ABCD2已知,则( )ABCD3点为不等式组所表示的平面区域上的动点,则的取值范围是( )ABCD4著名的斐波那契数列:1,1,2,3,5,8,满足,若,则( )A2020B4038C4039D40405在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是26.7,天狼星的星等是1.45,则太阳与天狼星的亮度的比值为( )A1010.1B10.1Clg10.1D1010.16已知椭圆:的左、右焦点分别为,过的直线与轴交于点,线段与交于点.若,则的方程为( )ABCD7新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D2016年我国数字出版营收占新闻出版营收的比例未超过三分之一8若非零实数、满足,则下列式子一定正确的是( )ABCD9已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )ABC3D410已知中,则( )A1BCD11已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD12第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若NRF=60°,则|FR|等于_.14已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,当面积最大时,直线的方程为_.15已知,是平面向量,是单位向量.若,且,则的取值范围是_.16已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,则双曲线的离心率的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,且PA=AD,E, F分别是棱AB, PC的中点.求证:(1) EF /平面PAD;(2)平面PCE平面PCD18(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.19(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.20(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由21(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值22(10分)已知函数(1)讨论的单调性;(2)当时,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.2、D【解析】分别解出集合然后求并集.【详解】解:, 故选:D【点睛】考查集合的并集运算,基础题.3、B【解析】作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论【详解】不等式组作出可行域如图:,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,故选:【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键4、D【解析】计算,代入等式,根据化简得到答案.【详解】,故,故.故选:.【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.5、A【解析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识信息处理能力阅读理解能力以及指数对数运算.6、D【解析】由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.7、C【解析】通过图表所给数据,逐个选项验证.【详解】根据图示数据可知选项A正确;对于选项B:,正确;对于选项C:,故C不正确;对于选项D:,正确.选C.【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单.8、C【解析】令,则,将指数式化成对数式得、后,然后取绝对值作差比较可得【详解】令,则,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题9、A【解析】根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平10、C【解析】以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.11、D【解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题12、A【解析】根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由题意知:,.由NRF=60°,可得为等边三角形,MFPQ,可得F为HR的中点,即求.【详解】不妨设点P在第一象限,如图所示,连接MF,QF.抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,.M,N分别为PQ,PF的中点,PQ垂直l于点Q,PQ/OR,NRF=60°,为等边三角形,MFPQ,易知四边形和四边形都是平行四边形,F为HR的中点,故答案为:2.【点睛】本题主要考查抛物线的定义,属于基础题.14、【解析】根据均值不等式得到,根据等号成立条件得到直线的倾斜角为,计算得到直线方程.【详解】由椭圆,可知,(当且仅当,等号成立),直线的倾斜角为,直线的方程为.故答案为:.【点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力.15、【解析】先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解【详解】由是单位向量若,设,则,又,则,则,则,又,所以,(当或时取等)即的取值范围是,故答案为:,【点睛】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平16、【解析】法一:根据直角三角形的性质和勾股定理得,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,设,则,令,所以时,在上单调递增, ,.法二:,令,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】(1)取的中点构造平行四边形,得到,从而证出平面;(2)先证平面,再利用面面垂直的判定定理得到平面平面【详解】证明:(1)如图,取的中点,连接,是棱的中点,底面是矩形,且,又,分别是棱,的中点,且,且,四边形为平行四边形,又平面,平面,平面;(2),点是棱的中点,又,平面,平面,底面是矩形,平面,平面,且,平面,又平面,又平面,平面,且,平面,又平面,平面平面【点睛】本题主要考查线面平行的判定,面面垂直的判定,首选判定定理,是中档题18、(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”(2)见解析【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望试题解析:()根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系” ()由表可知在8根中乙地“短纤维”的根数为,的可能取值为:1,1,2,3, , 的分布列为:1123 19、(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【解析】(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;(3)利用(1)(2)的结果,可估算两公司的每位员工在该月所得的劳务费【详解】解:(1)由题意知甲公司员工在这10天投递的快递件数的平均数为.众数为330.(2)设乙公司员工1天的投递件数为随机变量,则当时,当时,当时,当时,当时,的分布列为204219228273291(元);(3)由(1)估计甲公司被抽取员工在该月所得的劳务费为(元)由(2)估计乙公司被抽取员工在该月所得的劳务费为(元).【点睛】本题考查频率分布表的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.20、(1) (1)不存在,理由见解析【解析】(1)利用离心率和过点,列出等式,即得解(1)设的方程为,与椭圆联立,利用韦达定理表示中点N的坐标,用点坐标表示,利用韦达关系代入,得到关于k的等式,即可得解.【详解】(1)由题意,可得解得则,故椭圆的方程为(1)当直线的斜率不存在时,不符合题意当的斜率存在时,设的方程为,联立得,设,则,即设,则,则,即,整理得,此方程无解,故的方程不存在综上所述,不存在直线使得【点睛】本题考查了直线和椭圆综合,考查了弦长和中点问题,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.21、(1)见解析 (2)的最小值为【解析】(1)由题可得函数的定义域为,当时,令,可得;令,可得,所以函数在上单调递增,在上单调递减; 当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增 综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增 (2)方法一:当时,设,则,所以函数在上单调递减,所以,当且仅当时取等号当时,设,则,所以,设,则,所以函数在上单调递减,且,所以存在,使得,所以当时,;当时, 所以函数在上单调递增,在上单调递减,因为,所以,所以,当且仅当时取等号所以当时,函数取得最小值,且,故函数的最小值为 方法二:当时,则,令,则,所以函数在上单调递增, 又,所以存在,使得,所以函数在上单调递减,在上单调递增, 因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为22、(1)见解析;(2)【解析】(1)f(x)=(x+1)ex-ax-a=(x+1)(ex-a)对a分类讨论,即可得出单调性(2)由xex-ax-a+10,可得a(x+1)xex+1,当x=-1时,0-+1恒成立当x-1时,a令g(x)=,利用导数研究函数的单调性极值与最值即可得出【详解】解法一:(1)当时,-1-0+极小值所以在上单调递减,在单调递增.当时,的根为或.若,即,-1+0-0+极大值极小值所以在,上单调递增,在上单调递减.若,即,在上恒成立,所以在上单调递增,无减区间. 若,即,-1+0-0+极大值极小值所以在,上单调递增,在上单调递减. 综上:当时,在上单调递减,在上单调递增;当时,在,上单调递增,在上单调递减;自时,在上单调递增,无减区间;当时,在,上单调递增,在上单调递减.(2)因为,所以.当时,恒成立.当时,.令, 设,因为在上恒成立,即在上单调递增.又因为,所以在上单调递减,在上单调递增,则,所以.综上,的取值范围为.解法二:(1)同解法一;(2)令,所以,当时,则在上单调递增,所以,满足题意.当时,令,因为,即在上单调递增.又因为,所以在上有唯一的解,记为,-0+极小值,满足题意.当时,不满足题意.综上,的取值范围为.【点睛】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题