四川省富顺县2022-2023学年中考试题猜想数学试卷含解析.doc
-
资源ID:87997103
资源大小:794KB
全文页数:23页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省富顺县2022-2023学年中考试题猜想数学试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在菱形ABCD中,AB=5,BCD=120°,则ABC的周长等于( )A20B15C10D52若分式有意义,则x的取值范围是( )Ax3Bx3Cx3Dx=33已知函数yax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c40的根的情况是A有两个相等的实数根B有两个异号的实数根C有两个不相等的实数根D没有实数根4下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A2B1C0D15如图,四边形ABCD内接于O,AB为O的直径,点C为弧BD的中点,若DAB=50°,则ABC的大小是()A55°B60°C65°D70°6某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D517函数yax2与yax+b的图象可能是()ABCD8某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A24.5,24.5B24.5,24C24,24D23.5,249下列说法正确的是( )A2a2b与2b2a的和为0B的系数是,次数是4次C2x2y3y21是3次3项式Dx2y3与 是同类项10如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A5:2B3:2C3:1D2:111某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示其中阅读时间是810小时的频数和频率分别是( )A15,0.125B15,0.25C30,0.125D30,0.2512下列图形中,不是轴对称图形的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,将AOB以O为位似中心,扩大得到COD,其中B(3,0),D(4,0),则AOB与COD的相似比为_14如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA3,OB4,D为边OB的中点若E为边OA上的一个动点,当CDE的周长最小时,则点E的坐标_ 15如图,在ABC中,点D、E分别在AB、AC上,且DEBC,已知AD2,DB4,DE1,则BC_16观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是_m.17瑞士的一位中学教师巴尔末从光谱数据,中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门请你根据这个规律写出第9个数_18已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知:AB是O的直径,点C在O上,CD是O的切线,ADCD于点D,E是AB延长线上一点,CE交O于点F,连接OC、AC(1)求证:AC平分DAO(2)若DAO=105°,E=30°求OCE的度数;若O的半径为2,求线段EF的长20(6分)如图,在RtABC中,C=90°,以AC为直径作O,交AB于D,过点O作OEAB,交BC于E(1)求证:ED为O的切线;(2)若O的半径为3,ED=4,EO的延长线交O于F,连DF、AF,求ADF的面积21(6分)如图,RtABC中,C=90°,AB=14,AC=7,D是BC上一点,BD=8,DEAB,垂足为E,求线段DE的长22(8分)如图,已知AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)23(8分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示甲的速度是_米/分钟;当20t30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?24(10分)如图所示,ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,EC的延长线交BD于点P(1)把ABC绕点A旋转到图1,BD,CE的关系是 (选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把ABC绕点A旋转,当EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 25(10分)如图,一次函数yx+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒(1)点P在运动过程中,若某一时刻,OPA的面积为6,求此时P的坐标;(2)在整个运动过程中,当t为何值时,AOP为等腰三角形?(只需写出t的值,无需解答过程)26(12分)在矩形ABCD中,两条对角线相交于O,AOB=60°,AB=2,求AD的长27(12分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下成绩/分1201111101011009190以下成绩等级ABCD请根据以上信息解答下列问题:(1)这次统计共抽取了 名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】ABCD是菱形,BCD=120°,B=60°,BA=BCABC是等边三角形ABC的周长=3AB=1故选B2、C【解析】试题分析:分式有意义,x30,x3;故选C考点:分式有意义的条件3、A【解析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c40的根的情况即是判断函数yax2+bx+c的图象与直线y4交点的情况【详解】函数的顶点的纵坐标为4,直线y4与抛物线只有一个交点,方程ax2+bx+c40有两个相等的实数根,故选A【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4、A【解析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解【详解】|-1|=1,|-1|=1,|-1|-1|=10,四个数表示在数轴上,它们对应的点中,离原点最远的是-1故选A【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想5、C【解析】连接OC,因为点C为弧BD的中点,所以BOC=DAB=50°,因为OC=OB,所以ABC=OCB=65°,故选C6、D【解析】试题解析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜花盆数为故选C.7、B【解析】选项中,由图可知:在,;在,所以A错误;选项中,由图可知:在,;在,所以B正确;选项中,由图可知:在,;在,所以C错误;选项中,由图可知:在,;在,所以D错误故选B点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.8、A【解析】【分析】根据众数和中位数的定义进行求解即可得【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.9、C【解析】根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得【详解】A、2a2b与-2b2a不是同类项,不能合并,此选项错误;B、a2b的系数是,次数是3次,此选项错误;C、2x2y-3y2-1是3次3项式,此选项正确;D、x2y3与相同字母的次数不同,不是同类项,此选项错误;故选C【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义10、C【解析】求出正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积,阴影部分的面积,空白部分与阴影部分面积之比是:1,故选C【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型11、D【解析】分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,又被调查学生总数为120人,一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.12、A【解析】观察四个选项图形,根据轴对称图形的概念即可得出结论【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形故选A【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合二、填空题:(本大题共6个小题,每小题4分,共24分)13、3:1【解析】AOB与COD关于点O成位似图形,AOBCOD,则AOB与COD的相似比为OB:OD=3:1,故答案为3:1 (或)14、 (1,0) 【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值为此,作点D关于x轴的对称点D,当点E在线段CD上时的周长最小详解:如图,作点D关于x轴的对称点D,连接CD与x轴交于点E,连接DE.若在边OA上任取点E与点E不重合,连接CE、DE、DE由DE+CE=DE+CE>CD=DE+CE=DE+CE,可知CDE的周长最小,在矩形OACB中,OA=3,OB=4,D为OB的中点,BC=3,DO=DO=2,DB=6,OEBC, RtDOERtDBC,有 OE=1,点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.15、1【解析】先由DEBC,可证得ADEABC,进而可根据相似三角形得到的比例线段求得BC的长【详解】解:DEBC,ADEABC,DE:BCAD:AB,AD2,DB4,ABAD+BD6,1:BC2:6,BC1,故答案为:1【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形16、135【解析】试题分析:根据题意可得:BDA=30°,DAC =60°,在RtABD中,因为AB=45m,所以AD=m,所以在RtACD中,CD=AD=×=135m考点:解直角三角形的应用17、【解析】分子的规律依次是:32,42,52,62,72,82,92,分母的规律是:规律是:5+7=12 12+9=21 21+11=32 32+13=45,即分子为(n+2)2,分母为n(n+4)【详解】解:由题可知规律,第9个数的分子是(9+2)2=121;第五个的分母是:32+13=45;第六个的分母是:45+15=60;第七个的分母是:60+17=77;第八个的分母是:77+19=96;则第九个的分母是:96+21=1因而第九个数是:故答案为:【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律18、20【解析】利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【详解】底面直径为8,底面半径=4,底面周长=8,由勾股定理得,母线长=5,故圆锥的侧面积=×8×5=20,故答案为:20【点睛】本题主要考查了圆锥的侧面积的计算方法解题的关键是熟记圆锥的侧面展开扇形的面积计算方法三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)OCE=45°;EF =-2.【解析】【试题分析】(1)根据直线与O相切的性质,得OCCD. 又因为ADCD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD/OC. DAC=OCA.又因为OC=OA,根据等边对等角,得OAC=OCA.等量代换得:DAC=OAC.根据角平分线的定义得:AC平分DAO.(2)因为 AD/OC,DAO=105°,根据两直线平行,同位角相等得,EOC=DAO=105°,在 中,E=30°,利用内角和定理,得:OCE=45°. 作OGCE于点G,根据垂径定理可得FG=CG, 因为OC=,OCE=45°.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在RtOGE中,E=30°,得GE=, 则EF=GE-FG=-2.【试题解析】(1)直线与O相切,OCCD. 又ADCD,AD/OC. DAC=OCA.又OC=OA,OAC=OCA.DAC=OAC.AC平分DAO.(2)解:AD/OC,DAO=105°,EOC=DAO=105°E=30°,OCE=45°. 作OGCE于点G,可得FG=CG OC=,OCE=45°.CG=OG=2.FG=2. 在RtOGE中,E=30°,GE=.EF=GE-FG=-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.20、(1)见解析;(2)ADF的面积是【解析】试题分析:(1)连接OD,CD,求出BDC=90°,根据OEAB和OA=OC求出BE=CE,推出DE=CE,根据SSS证ECOEDO,推出EDO=ACB=90°即可;(2)过O作OMAB于M,过F作FNAB于N,求出OM=FN,求出BC、AC、AB的值,根据sinBAC,求出OM,根据cosBAC,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可试题解析:(1)证明:连接OD,CD,AC是O的直径,CDA=90°=BDC,OEAB,CO=AO,BE=CE,DE=CE,在ECO和EDO中 ,ECOEDO,EDO=ACB=90°,即ODDE,OD过圆心O,ED为O的切线(2)过O作OMAB于M,过F作FNAB于N,则OMFN,OMN=90°,OEAB,四边形OMFN是矩形,FN=OM,DE=4,OC=3,由勾股定理得:OE=5,AC=2OC=6,OEAB,OECABC,AB=10,在RtBCA中,由勾股定理得:BC=8,sinBAC=,即 ,OM=FN,cosBAC=,AM= 由垂径定理得:AD=2AM=,即ADF的面积是AD×FN=××=答:ADF的面积是【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力21、1【解析】试题分析:根据相似三角形的判定与性质,可得答案试题解析:DEAB,BED=90°,又C=90°,BED=C又B=B,BEDBCA,DE=1考点:相似三角形的判定与性质22、见解析【解析】作AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.【详解】解:作AOB的平分线OE,作线段MN的垂直平分线GH,GH交OE于点P点P即为所求【点睛】本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.23、(1)60;(2)s10t6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟【解析】(1)观察图像得出路程和时间,即可解决问题(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可【详解】(1)甲的速度为60米/分钟(2)当20t 1时,设s=mtn,由题意得:,解得:,所以s=10t6000;(3)当20t 1时,60t=10t6000,解得:t=25,2520=5;当1t 60时,60t=100,解得:t=50,5020=1综上所述:乙出发5分钟和1分钟时与甲在途中相遇(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400100(9060) x=360解得:x=2答:乙从景点B步行到景点C的速度是2米/分钟【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型24、(1)BD,CE的关系是相等;(2)或;(3)1,1【解析】分析:(1)依据ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,即可BA=CA,BAD=CAE,DA=EA,进而得到ABDACE,可得出BD=CE;(2)分两种情况:依据PDA=AEC,PCD=ACE,可得PCDACE,即可得到=,进而得到PD=;依据ABD=PBE,BAD=BPE=90°,可得BADBPE,即可得到,进而得出PB=,PD=BD+PB=;(3)以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值详解:(1)BD,CE的关系是相等理由:ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,BA=CA,BAD=CAE,DA=EA,ABDACE,BD=CE;故答案为相等(2)作出旋转后的图形,若点C在AD上,如图2所示:EAC=90°,CE=,PDA=AEC,PCD=ACE,PCDACE,PD=;若点B在AE上,如图2所示:BAD=90°,RtABD中,BD=,BE=AEAB=2,ABD=PBE,BAD=BPE=90°,BADBPE,即,解得PB=,PD=BD+PB=+=,故答案为或;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大如图3所示,分两种情况讨论:在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小当小三角形旋转到图中ACB的位置时,在RtACE中,CE=4,在RtDAE中,DE=,四边形ACPB是正方形,PC=AB=3,PE=3+4=1,在RtPDE中,PD=,即旋转过程中线段PD的最小值为1;当小三角形旋转到图中AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD的最大值为1故答案为1,1点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题25、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】(1)先求出OPA的面积为6时BP的长,再求出点P的坐标;(2)分别讨论AO=AP,AP=OP和AO=OP三种情况.【详解】(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,A(0,6),B(8,0),OA=6,OB=8,AB=10,AB边上的高为6×8÷10=,P点的运动时间为t,BP=t,则AP=,当AOP面积为6时,则有AP×=6,即×=6,解得t=7.5或12.5,过P作PEx轴,PFy轴,垂足分别为E、F,则PE=4.5或7.5,BE=6或10,则点P坐标为(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);(2)由题意可知BP=t,AP=,当AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况当AP=AO时,则有=6,解得t=4或16;当AP=OP时,过P作PMAO,垂足为M,如图1,则M为AO中点,故P为AB中点,此时t=5;当AO=OP时,过O作ONAB,垂足为N,过P作PHOB,垂足为H,如图2,则AN=AP=(10-t),PHAO,AOBPHB,=,即=,PH=t,又OAN+AON=OAN+PBH=90°,AON=PBH,又ANO=PHB,ANOPHB,=,即=,解得t=;综上可知当t的值为、4、5和16时,AOP为等腰三角形26、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由AOB=60°可得AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在RtABD中,由勾股定理可解得AD的长.试题解析:四边形ABCD是矩形,OA=OB=OD,BAD=90°,AOB=60°,AOB是等边三角形,OB=OA=2, BD=2OB=4,在RtABD中AD=.27、(1)1人;补图见解析;(2)10人;(3)610名.【解析】(1)用总人数乘以A所占的百分比,即可得到总人数;再用总人数乘以A等级人数所占比例可得其人数,继而根据各等级人数之和等于总人数可得D等级人数,据此可补全条形图;(2)用总人数乘以(A的百分比+B的百分比),即可解答;(3)先计算出提高后A,B所占的百分比,再乘以总人数,即可解答【详解】解:(1)本次调查抽取的总人数为15÷=1(人),则A等级人数为1×=10(人),D等级人数为1(10+15+5)=20(人),补全直方图如下:故答案为1(2)估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有1000×=10(人);(3)A级学生数可提高40%,B级学生数可提高10%,B级学生所占的百分比为:30%×(1+10%)=33%,A级学生所占的百分比为:20%×(1+40%)=28%,1000×(33%+28%)=610(人),估计经过训练后九年级数学成绩在B以上(含B级)的学生可达610名【点睛】考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小