山东省新泰第一中学2022-2023学年高三压轴卷数学试卷含解析.doc
-
资源ID:87997136
资源大小:1.73MB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省新泰第一中学2022-2023学年高三压轴卷数学试卷含解析.doc
2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,内角的平分线交边于点,则的面积是( )ABCD2易经包含着很多哲理,在信息学、天文学中都有广泛的应用,易经的博大精深,对今天 的几何学和其它学科仍有深刻的影响下图就是易经中记载的几何图形八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田已知正八边 形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为( )ABCD3若,则实数的大小关系为( )ABCD4已知函数,则( )ABCD5已知,则的取值范围是()A0,1BC1,2D0,26对于函数,若满足,则称为函数的一对“线性对称点”若实数与和与为函数的两对“线性对称点”,则的最大值为( )ABCD7若x(0,1),alnx,b,celnx,则a,b,c的大小关系为()AbcaBcbaCabcDbac8已知,那么是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9已知,若,则等于( )A3B4C5D610已知,为圆上的动点,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是( )ABCD11已知集合则( )ABCD12已知定义在R上的偶函数满足,当时,函数(),则函数与函数的图象的所有交点的横坐标之和为( )A2B4C5D6二、填空题:本题共4小题,每小题5分,共20分。13已知向量,则_.14若双曲线的两条渐近线斜率分别为,若,则该双曲线的离心率为_.15已知的终边过点,若,则_16设、为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:若mn,则m;若m,n,m,n,则;若,m,n,则mn;若,m,n,mn,则n;其中正确命题的序号为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.18(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.19(12分)在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上的点,且满足.记点的轨迹为曲线.(1)求曲线的方程;(2)若点为曲线上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.20(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价 (单位:元)和日销量 (单位:件) 的一组数据后决定选择 作为回归模型进行拟合.具体数据如下表,表中的 :根据上表数据计算的值;已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附:附:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.21(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.22(10分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.2、B【解析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.3、A【解析】将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.4、A【解析】根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.5、D【解析】设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【详解】设,则,()22|224,所以可得:,配方可得,所以,又 则0,2故选:D【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6、D【解析】根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.7、A【解析】利用指数函数、对数函数的单调性直接求解【详解】x(0,1),alnx0,b()lnx()01,0celnxe01,a,b,c的大小关系为bca故选:A【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题8、B【解析】由,可得,解出即可判断出结论【详解】解:因为,且,解得是的必要不充分条件故选:【点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题9、C【解析】先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.10、A【解析】由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.【点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.11、B【解析】解对数不等式可得集合A,由交集运算即可求解.【详解】集合解得由集合交集运算可得,故选:B.【点睛】本题考查了集合交集的简单运算,对数不等式解法,属于基础题.12、B【解析】由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出,然后由模的平方转化为向量的平方,利用数量积的运算计算【详解】由题意得,.,.,.故答案为:【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础本题关键是用数量积的定义把模的运算转化为数量积的运算14、2【解析】由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.15、【解析】由题意利用任意角的三角函数的定义,求得的值【详解】的终边过点,若, 即答案为-2.【点睛】本题主要考查任意角的三角函数的定义和诱导公式,属基础题.16、【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于,当mn时,由直线与平面平行的定义和判定定理,不能得出m,错误;对于,当m,n,且m,n时,由两平面平行的判定定理,不能得出,错误;对于,当,且m,n时,由两平面平行的性质定理,不能得出mn,错误;对于,当,且m,n,mn时,由两平面垂直的性质定理,能够得出n,正确;综上知,正确命题的序号是故答案为:【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;(2)设,由,即可求出,则计算可得;【详解】解:(1)圆的参数方程(为参数)可化为,即圆的极坐标方程为.(2)设,由,解得.设,由,解得.,.【点睛】本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题18、 (1) (2) 【解析】(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值【详解】(1)时,.当时,即为,解得.当时, ,解得.当时, ,解得.综上,的解集为.(2).,由的图象知,.【点睛】本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题19、(1)(2)存在;常数,定值【解析】(1)设出的坐标,利用以及,求得曲线的方程.(2)当直线的斜率存在时,设出直线的方程,求得到直线的距离.联立直线的方程和曲线的方程,写出根与系数关系,结合以及为定值,求得的值.当直线的斜率不存在时,验证.由此得到存在常数,且定值.【详解】(1)解析:(1)设,由题可得,解得又,即,消去得:(2)当直线的斜率存在时,设直线的方程为设,由可得:由点到的距离为定值可得(为常数)即得:即,又为定值时,此时,且符合当直线的斜率不存在时,设直线方程为由题可得,时,经检验,符合条件综上可知,存在常数,且定值【点睛】本小题主要考查轨迹方程的求法,考查直线和椭圆的位置关系,考查运算求解能力,考查椭圆中的定值问题,属于难题.20、(1)列联表见解析,有把握;(2); 元时【解析】(1)直接由题意列出列联表,通过计算,可判断精英店与采用促销活动是否有关.(2)代入表中数据,结合公式求出;由中所得的线性回归方程,若售价为,单价利润为,日销售量为 ,进而可求出日利润,结合导数可求最值.【详解】解:(1)由题意知,采用促销中精英店的数量为 ,采用促销中非精英店的数量为;没有采用促销中精英店的数量为,没有采用促销中非精英店的数量为,列联表为采用促销没有采用促销合计精英店352055非精英店153045合计5050100因为有的把握认为“精英店与采用促销活动有关”.(2)由公式可得:所以回归方程为若售价为,单件利润为,日销售为,故日利润,解得.当时,单调递增;当时,单调递减.故当售价元时,日利润达到最大为元.【点睛】本题考查了独立性检验,考查了线性回归方程的求法,考查了函数最值的求解.在求函数的最值时,常用的方法有:函数图像法、结合函数单调性分析最值、基本不等式法、导数法.其中最常用的还是导数法.21、(1)或; (2).【解析】(1)利用绝对值的几何意义,将不等式,转化为不等式或或求解.(2)根据-2在R上恒成立,由绝对值三角不等式求得的最小值即可.【详解】(1)原不等式等价于或或,解得:或,不等式的解集为或.(2)因为-2在R上恒成立,而,所以,解得,所以实数的取值范围是.【点睛】本题主要考查绝对值不等式的解法和不等式恒成立问题,还考查了运算求解的能力,属于中档题.22、(1),(2)侧面积取得最大值时,等腰三角形的腰的长度为【解析】试题分析:(1)由条件,所以S,;(2)令,所以得,通过求导分析,得在时取得极大值,也是最大值试题解析:(1)设交于点,过作,垂足为, 在中,在中,所以S,(2)要使侧面积最大,由(1)得: 令,所以得,由得:当时,当时,所以在区间上单调递增,在区间上单调递减,所以在时取得极大值,也是最大值;所以当时,侧面积取得最大值, 此时等腰三角形的腰长答:侧面积取得最大值时,等腰三角形的腰的长度为