四川省成都七中学育才校2022-2023学年中考一模数学试题含解析.doc
-
资源ID:87997371
资源大小:1,006KB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省成都七中学育才校2022-2023学年中考一模数学试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A和B谐C凉D山2二次函数ya(x4)24(a0)的图象在2x3这一段位于x轴的下方,在6x7这一段位于x轴的上方,则a的值为( )A1 B1 C2 D232017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )A305.5×104 B3.055×102 C3.055×1010 D3.055×10114直线y=3x+1不经过的象限是()A第一象限B第二象限C第三象限D第四象限5若关于x的不等式组无解,则m的取值范围()Am3Bm3Cm3Dm36如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶设x(s)后两车相距y (m),y与x的函数关系如图2所示有以下结论:图1中a的值为500;乙车的速度为35 m/s;图1中线段EF应表示为;图2中函数图象与x轴交点的横坐标为1其中所有的正确结论是( )ABCD7如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿ABC的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示ADP的面积y(cm2)关于x(cm)的函数关系的图象是()ABCD8如图是某个几何体的展开图,该几何体是( )A三棱柱B圆锥C四棱柱D圆柱9若关于x、y的方程组有实数解,则实数k的取值范围是()Ak4Bk4Ck4Dk410已知抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:抛物线过原点;ab+c1;当x1时,y随x增大而增大;抛物线的顶点坐标为(2,b);若ax2+bx+c=b,则b24ac=1其中正确的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11在RtABC中,C90°,AB6,cosB,则BC的长为_12已知实数m,n满足,且,则= 13如图,在平面直角坐标系中,的顶点、在坐标轴上,点的坐标是(2,2)将ABC沿轴向左平移得到A1B1C1,点落在函数y=-如果此时四边形的面积等于,那么点的坐标是_14如图,在中,AB为直径,点C在上,的平分线交于D,则_15如图,点A,B是反比例函数y=(x0)图象上的两点,过点A,B分别作ACx轴于点C,BDx轴于点D,连接OA,BC,已知点C(2,0),BD=2,SBCD=3,则SAOC=_16今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图)已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(ACD和BCD)分别是60°,45°那么路况警示牌AB的高度为_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标18(8分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F(1)求证:GBEGEF(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围(3)如图2,连接AC交GF于点Q,交EF于点P当AGQ与CEP相似,求线段AG的长 19(8分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间(温馨提示:sin53°0.8,cos53°0.6)20(8分)已知:a是2的相反数,b是2的倒数,则(1)a=_,b=_;(2)求代数式a2b+ab的值21(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF求证:(1)ABECDF;四边形BFDE是平行四边形22(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_人,扇形统计图中“了解”部分所对应扇形的圆心角为_°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.23(12分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?24在ABC中,已知AB=AC,BAC=90°,E为边AC上一点,连接BE(1)如图1,若ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”故选:D点睛:注意正方体的空间图形,从相对面入手,分析及解答问题2、A【解析】试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1x2这段位于x轴的上方,而抛物线在2x3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入ya(x4)24(a0)可求出a=1.故选A3、C【解析】解:305.5亿=3.055×1故选C4、D【解析】利用两点法可画出函数图象,则可求得答案【详解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,直线与x轴交于点(-,0),与y轴交于点(0,1),其函数图象如图所示,函数图象不过第四象限,故选:D【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键5、C【解析】根据“大大小小找不着”可得不等式2+m2m-1,即可得出m的取值范围【详解】 ,由得:x2+m,由得:x2m1,不等式组无解,2+m2m1,m3,故选C【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键6、A【解析】分析:根据图象2得出结论; 根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; 根据图1,线段的和与差可表示EF的长;利用待定系数法求直线的解析式,令y=0可得结论.详解:y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.7、B【解析】ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象【详解】解:当P点由A运动到B点时,即0x2时,y×2xx,当P点由B运动到C点时,即2x4时,y×2×22,符合题意的函数关系的图象是B;故选B【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围8、A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱【详解】解:观察图形可知,这个几何体是三棱柱故选A【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键9、C【解析】利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式0来确定k的取值范围【详解】解:xyk,x+y4,根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根 解不等式得 故选:C【点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系解题的关键是了解方程组有实数根的意义10、B【解析】由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论正确;当x=1时,y1,得到ab+c1,结论错误;根据抛物线的对称性得到结论错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论正确;根据抛物线的顶点坐标为(2,b),判断【详解】解:抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),抛物线与x轴的另一交点坐标为(1,1),抛物线过原点,结论正确;当x=1时,y1,ab+c1,结论错误;当x1时,y随x增大而减小,错误;抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,且抛物线过原点,c=1,b=4a,c=1,4a+b+c=1,当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,抛物线的顶点坐标为(2,b),结论正确;抛物线的顶点坐标为(2,b),ax2+bx+c=b时,b24ac=1,正确;综上所述,正确的结论有:故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解析】根据锐角的余弦值等于邻边比对边列式求解即可.【详解】C=90°,AB=6,BC=4.【点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在RtABC中, , ,.12、【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解试题解析:时,则m,n是方程3x26x5=0的两个不相等的根,原式=,故答案为考点:根与系数的关系13、 (-5, )【解析】分析:依据点B的坐标是(2,2),BB2AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(5,)详解:如图,点B的坐标是(2,2),BB2AA2,点B2的纵坐标为2又点B2落在函数y=的图象上,当y=2时,x=3,BB2=AA2=5=CC2又四边形AA2C2C的面积等于,AA2×OC=,OC=,点C2的坐标是(5,) 故答案为(5,) 点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度14、1【解析】由AB为直径,得到,由因为CD平分,所以,这样就可求出【详解】解:为直径,又平分,故答案为1【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度15、1【解析】由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可【详解】BDCD,BD=2,SBCD=BDCD=2,即CD=2C(2,0),即OC=2,OD=OC+CD=2+2=1,B(1,2),代入反比例解析式得:k=10,即y=,则SAOC=1 故答案为1【点睛】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键16、m【解析】由特殊角的正切值即可得出线段CD的长度,在RtBDC中,由BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论【详解】在RtADC中,ACD=60°,AD=4tan60°=CD=在RtBCD中,BAD=45,CD=BD=CD=.AB=AD-BD=4-=路况警示牌AB的高度为m故答案为:m【点睛】解直角三角形的应用-仰角俯角问题三、解答题(共8题,共72分)17、(1);(2);(3)或【解析】(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;(3)利用三角形相似求出ABCPBF,即可求出圆的半径,即可得出P点的坐标【详解】(1)抛物线的图象经过,把,代入得:解得:,抛物线解析式为;(2)抛物线改写成顶点式为,抛物线对称轴为直线,对称轴与轴的交点C的坐标为,设点B的坐标为,则,点B的坐标为,设直线解析式为:,把,代入得:,解得:,直线解析式为:(3)当点P在抛物线的对称轴上,P与直线AB和x轴都相切,设P与AB相切于点F,与x轴相切于点C,如图1;PFAB,AF=AC,PF=PC,AC=1+2=3,BC=4,AB=5,AF=3,BF=2,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,);设P与AB相切于点F,与轴相切于点C,如图2:PFAB,PF=PC,AC=3,BC=4, AB=5,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,-6),综上所述,与直线和都相切时,或【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键18、(1)见解析;(2)y=4x+(0x3);(3)当AGQ与CEP相似,线段AG的长为2或4【解析】(1)先判断出BEF'CEF,得出BF'=CF,EF'=EF,进而得出BGE=EGF,即可得出结论;(2)先判断出BEGCFE进而得出CF=,即可得出结论;(3)分两种情况,AGQCEP时,判断出BGE=60°,即可求出BG;AGQCPE时,判断出EGAC,进而得出BEGBCA即可得出BG,即可得出结论【详解】(1)如图1,延长FE交AB的延长线于F',点E是BC的中点,BE=CE=2,四边形ABCD是正方形,ABCD,F'=CFE,在BEF'和CEF中,BEF'CEF,BF'=CF,EF'=EF,GEF=90°,GF'=GF,BGE=EGF,GBE=GEF=90°,GBEGEF;(2)FEG=90°,BEG+CEF=90°,BEG+BGE=90°,BGE=CEF,EBG=C=90°,BEGCFE,由(1)知,BE=CE=2,AG=x,BG=4x,CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,y=GF'=BG+BF'=4x+当CF=4时,即:=4,x=3,(0x3),即:y关于x的函数表达式为y=4x+(0x3);(3)AC是正方形ABCD的对角线,BAC=BCA=45°,AGQ与CEP相似,AGQCEP,AGQ=CEP,由(2)知,CEP=BGE,AGQ=BGE,由(1)知,BGE=FGE,AGQ=BGQ=FGE,AGQ+BGQ+FGE=180°,BGE=60°,BEG=30°,在RtBEG中,BE=2,BG=,AG=ABBG=4,AGQCPE,AQG=CEP,CEP=BGE=FGE,AQG=FGE,EGAC,BEGBCA,BG=2,AG=ABBG=2,即:当AGQ与CEP相似,线段AG的长为2或4【点睛】本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.19、小时【解析】过点C作CDAB交AB延长线于D先解RtACD得出CD=AC=40海里,再解RtCBD中,得出BC=50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间【详解】解:如图,过点C作CDAB交AB延长线于D在RtACD中,ADC=90°,CAD=30°,AC=80海里,CD=AC=40海里在RtCBD中,CDB=90°,CBD=90°37°=53°,BC=50(海里),海警船到大事故船C处所需的时间大约为:50÷40=(小时)考点:解直角三角形的应用-方向角问题20、2 【解析】试题分析:利用相反数和倒数的定义即可得出.先因式分解,再代入求出即可.试题解析:是的相反数,是的倒数,当时, 点睛:只有符号不同的两个数互为相反数.乘积为的两个数互为倒数.21、(1)见解析;(2)见解析;【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得A=C,AB=CD,又由AE=CF,利用SAS,即可判定ABECDF(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得ADBC,AD=BC,又由AE=CF,即可证得DE=BF根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形【详解】证明:(1)四边形ABCD是平行四边形,A=C,AB=CD,在ABE和CDF中,AB=CD,A=C,AE=CF,ABECDF(SAS)(2)四边形ABCD是平行四边形,ADBC,AD=BCAE=CF,ADAE=BCCF,即DE=BF四边形BFDE是平行四边形22、(1)60,30;(2)300;(3) 【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:30÷50%=60(人);了解部分的人数为60(15+30+10)=5,扇形统计图中“了解”部分所对应扇形的圆心角为:×360°=30°;故答案为60,30;(2)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A的情况有2种,所以P(抽到女生A)=【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比23、(1)25, 90°;(2)见解析;(3)该市 “活动时间不少于5天”的大约有1【解析】试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)“活动时间不少于5天”的学生人数占75%,20000×75%=1该市“活动时间不少于5天”的大约有1人考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.24、(1) (2)证明见解析【解析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题(2)如图2中,作CQAC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15°,AME=MBE+MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,AB2+AE2=BE2,x= (负根已经舍弃),AB=AC=(2+ ) ,BC= AB= +1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90°,FGCD,AEB=CMF,GEM=GME,EG=MG,ABE=CAQ,AB=AC,BAE=ACQ=90°,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45°,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题