四川省广元市剑州中学2023届毕业升学考试模拟卷数学卷含解析.doc
-
资源ID:87997405
资源大小:750KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省广元市剑州中学2023届毕业升学考试模拟卷数学卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,重复操作依次得到点P1,P2,则点P2010的坐标是()A(2010,2)B(2010,2)C(2012,2)D(0,2)2抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,303如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A(,-1)B(2,1)C(1,-)D(1,)4如图,已知AB是O的直径,弦CDAB于E,连接BC、BD、AC,下列结论中不一定正确的是()AACB=90°BOE=BECBD=BCD5如图,从圆外一点引圆的两条切线,切点分别为,如果, ,那么弦AB的长是( )ABCD6在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A27B51C69D727()A±4B4C±2D28如图,点D在ABC的边AC上,要判断ADB与ABC相似,添加一个条件,不正确的是( )AABD=CBADB=ABCCD9如图,一段抛物线:y=x(x5)(0x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D610已知一元二次方程有一个根为2,则另一根为A2B3C4D8二、填空题(本大题共6个小题,每小题3分,共18分)11若一个等腰三角形的周长为26,一边长为6,则它的腰长为_12二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3An在y轴的正半轴上,点B1,B2,B3Bn在二次函数位于第一象限的图象上,点C1,C2,C3Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3四边形An1BnAnCn都是菱形,A0B1A1=A1B2A1=A2B3A3=An1BnAn=60°,菱形An1BnAnCn的周长为 13如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果1=27°,那么2=_°14关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_15如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点D若A=32°,则D=_度16已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第_象限三、解答题(共8题,共72分)17(8分)已知ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出ABC绕点C按顺时针方向旋转90°后的ABC;求点A旋转到点A所经过的路线长(结果保留).18(8分)如图是一副创意卡通圆规,图是其平面示意图,OA是支撑臂,OB是旋转臂使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆已知OAOB10cm.(1)当AOB18°时,求所作圆的半径(结果精确到0.01cm);(2)保持AOB18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°0.1564,cos9°0.9877,sin18°0.3090,cos18°0.9511,可使用科学计算器)19(8分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施经调査发现,每件商品每降价1元,商场平均每天可多售出2件若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加_件,每件商品,盈利_元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?20(8分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案21(8分)一道选择题有四个选项.(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.22(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为 (1)求,的值;(2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积23(12分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率24如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,BFC=BAD=2DFC求证:(1)CDDF;(2)BC=2CD参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,1),记P1(a1,b1),其中a1=1,b1=1根据对称关系,依次可以求得:P3(4a1,1b1),P4(1+a1,4+b1),P5(a1,1b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),1010=4×501+1,点P1010的坐标是(1010,1),故选:B点睛:本题考查了对称的性质,坐标与图形的变化-旋转,根据条件求出前边几个点的坐标,得到规律是解题关键2、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握3、A【解析】作ADy轴于D,作CEy轴于E,则ADO=OEC=90°,得出1+1=90°,由正方形的性质得出OC=AO,1+3=90°,证出3=1,由AAS证明OCEAOD,得到OE=AD=1,CE=OD=,即可得出结果【详解】解:作ADy轴于D,作CEy轴于E,如图所示:则ADO=OEC=90°,1+1=90°AO=1,AD=1,OD=,点A的坐标为(1,),AD=1,OD=四边形OABC是正方形,AOC=90°,OC=AO,1+3=90°,3=1在OCE和AOD中,OCEAOD(AAS),OE=AD=1,CE=OD=,点C的坐标为(,1)故选A【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键4、B【解析】根据垂径定理及圆周角定理进行解答即可【详解】AB是O的直径,ACB=90°,故A正确;点E不一定是OB的中点,OE与BE的关系不能确定,故B错误;ABCD,AB是O的直径,BD=BC,故C正确;,故D正确故选B【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键5、C【解析】先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解【详解】解:,PB为的切线,为等边三角形,故选C【点睛】本题考查切线长定理,掌握切线长定理是解题的关键6、D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1列出三个数的和的方程,再根据选项解出x,看是否存在解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2故任意圈出一竖列上相邻的三个数的和不可能是3故选D“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解7、B【解析】表示16的算术平方根,为正数,再根据二次根式的性质化简【详解】解:,故选B【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个8、C【解析】由A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用【详解】A是公共角,当ABD=C或ADB=ABC时,ADBABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,ADBABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,A不是夹角,故不能判定ADB与ABC相似,故C错误,符合题意要求,故选C9、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可详解:当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=A2A3=OA1=5,抛物线C404的解析式为y=(x5×403)(x5×404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键10、C【解析】试题分析:利用根与系数的关系来求方程的另一根设方程的另一根为,则+2=6, 解得=1考点:根与系数的关系二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解【详解】当6为腰长时,则腰长为6,底边=26-6-6=14,因为146+6,所以不能构成三角形;当6为底边时,则腰长=(26-6)÷2=1,因为6-616+6,所以能构成三角形;故腰长为1故答案为:1【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验12、4n【解析】试题解析:四边形A0B1A1C1是菱形,A0B1A1=60°,A0B1A1是等边三角形设A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:,解得m1=0(舍去),m1=1;故A0B1A1的边长为1,同理可求得A1B2A2的边长为2,依此类推,等边An-1BnAn的边长为n,故菱形An-1BnAnCn的周长为4n考点:二次函数综合题13、57°.【解析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得21+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.14、k【解析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围【详解】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,0,即(2k+1)2-4(k2+1)0,解得k,故答案为k【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键15、1【解析】分析:连接OC,根据圆周角定理得到COD=2A,根据切线的性质计算即可详解:连接OC,由圆周角定理得,COD=2A=64°,CD为O的切线,OCCD,D=90°-COD=1°,故答案为:1点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键16、【解析】直接利用反比例函数的增减性进而得出图象的分布【详解】反比例函数y(k0),在其图象所在的每个象限内,y的值随x的值增大而减小,它的图象所在的象限是第一、三象限故答案为:一、三【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键三、解答题(共8题,共72分)17、(1)、(2)见解析(3)【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长试题解析:(1)A(0,4)C(3,1)(2)如图所示:(3)根据勾股定理可得:AC=3,则考点:图形的旋转、扇形的弧长计算公式18、 (1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm【解析】试题分析:(1)根据题意作辅助线OCAB于点C,根据OA=OB=10cm,OCB=90°,AOB=18°,可以求得BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决试题解析:(1)作OCAB于点C,如右图2所示,由题意可得,OA=OB=10cm,OCB=90°,AOB=18°,BOC=9°,AB=2BC=2OBsin9°2×10×0.15643.13cm,即所作圆的半径约为3.13cm;(2)作ADOB于点D,作AE=AB,如下图3所示,保持AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,折断的部分为BE,AOB=18°,OA=OB,ODA=90°,OAB=81°,OAD=72°,BAD=9°,BE=2BD=2ABsin9°2×3.13×0.15640.98cm,即铅笔芯折断部分的长度是0.98cm考点:解直角三角形的应用;探究型19、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50x(3)每件商品降价1元时,商场日盈利可达到2000元【解析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元)答:若某天该商品每件降价3元,当天可获利1692元(2)每件商品每降价1元,商场平均每天可多售出2件,设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元故答案为2x;50-x(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,商城要尽快减少库存,x=1答:每件商品降价1元时,商场日盈利可达到2000元【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式)20、可以求出A、B之间的距离为111.6米.【解析】根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.【详解】解:,(对顶角相等),解得米所以,可以求出、之间的距离为米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.21、(1);(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解【详解】解:(1)选中的恰好是正确答案A的概率为;(2)画树状图:共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,所以选中的恰好是正确答案A,B的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率22、(1)m=4, n=1,k=3.(2)3.【解析】(1) 把点,分别代入直线中即可求出m=4,再把代入直线即可求出n=1.把代入函数求出k即可;(2)由(1)可求出点B的坐标为(0,4),点B是由点B向右平移得到,故点B的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AABB是平行四边形,再根据平行四边形的面积计算公式计算即可.【详解】解:(1)把点,分别代入直线中得:-4+m=0, m=4,直线解析式为.把代入得:n=-3+4=1.点C的坐标为(3,1)把(3,1)代入函数得:解得:k=3.m=4, n=1,k=3.(2)如图,设点B的坐标为(0,y)则y=-0+4=4点B的坐标是(0,4)当y=4时, 解得, 点B( ,4)A,B是由A,B向右平移得到,四边形AABB是平行四边形,故四边形AABB的面积=4=3.【点睛】本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.23、(1)5;(2)36%;(3).【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数= ,进行求解即可;(3)利用列举法求概率即可.试题解析:(1)E类:50-2-3-22-185(人),故答案为:5;补图如下:(2)D类:1850×100%36%,故答案为:36%;(3)设这5人为 有以下10种情况: 其中,两人都在 的概率是: .24、(1)详见解析;(2)详见解析.【解析】(1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得CDF=90°,则CDDF;(2)应先找到BC的一半,证明BC的一半和CD相等即可【详解】证明:(1)AB=AD,弧AB=弧AD,ADB=ABDACB=ADB,ACD=ABD,ACB=ADB=ABD=ACDADB=(180°BAD)÷2=90°DFCADB+DFC=90°,即ACD+DFC=90°,CDDF(2)过F作FGBC于点G,ACB=ADB,又BFC=BAD,FBC=ABD=ADB=ACBFB=FCFG平分BC,G为BC中点, 在FGC和DFC中, FGCDFC(ASA), BC=2CD【点睛】本题用到的知识点为:同圆中,相等的弧所对的弦相等,所对的圆周角相等,注意把所求角的度数进行合理分割;证两条线段相等,应证这两条线段所在的三角形全等