四川省广元市旺苍县重点达标名校2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc
-
资源ID:87997425
资源大小:735KB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省广元市旺苍县重点达标名校2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示的两个四边形相似,则的度数是()A60°B75°C87°D120°2七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大3下列运算中正确的是( )Ax2÷x8=x6Ba·a2=a2C(a2)3=a5D(3a)3=9a34下列事件中必然发生的事件是()A一个图形平移后所得的图形与原来的图形不全等B不等式的两边同时乘以一个数,结果仍是不等式C200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D随意翻到一本书的某页,这页的页码一定是偶数5下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个 B2个 C3个 D4个6如图,点A,B,C在O上,ACB=30°,O的半径为6,则的长等于()AB2C3D47超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A0.8x10=90B0.08x10=90C900.8x=10Dx0.8x10=908下列计算正确的是()A2x+3x=5xB2x3x=6xC(x3)2=5Dx3x2=x9如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上已知纸板的两条边DF50cm,EF30cm,测得边DF离地面的高度AC1.5m,CD20m,则树高AB为()A12mB13.5mC15mD16.5m10如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A主视图是中心对称图形B左视图是中心对称图形C主视图既是中心对称图形又是轴对称图形D俯视图既是中心对称图形又是轴对称图形11 “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为A675×102B67.5×102C6.75×104D6.75×10512下列图形中,线段MN的长度表示点M到直线l的距离的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,ACB90°,ACBC3,将ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE2,则sinBFD的值为_14若一个棱柱有7个面,则它是_棱柱15如图,随机闭合开关,中的两个,能让两盏灯泡和同时发光的概率为_16如图,已知CD是RtABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_cm.17有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_18轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_km三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,儿童游乐场有一项射击游戏从O处发射小球,将球投入正方形篮筐DABC正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3)小球按照抛物线yx2+bx+c 飞行小球落地点P 坐标(n,0)(1)点C坐标为 ;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数yx2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围20(6分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C(1)求证:ACD=B;(2)如图2,BDC的平分线分别交AC,BC于点E,F,求CEF的度数21(6分)计算:22(8分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3)(1)求该二次函数的表达式;(2)过点A的直线ADBC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,DMN的面积最大,并求出这个最大值23(8分)如图,已知:,求证:24(10分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF判断AF与O的位置关系并说明理由;若O的半径为4,AF=3,求AC的长25(10分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:设(其中均为整数),则有这样小明就找到了一种把部分的式子化为平方式的方法请你仿照小明的方法探索并解决下列问题:当均为正整数时,若,用含m、n的式子分别表示,得 , ;(2)利用所探索的结论,找一组正整数,填空: ( )2;(3)若,且均为正整数,求的值26(12分)已知抛物线的开口向上顶点为P(1)若P点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当1x2时,求y的取值范围(用含a的代数式表示)(3)若a1,且当0x1时,抛物线上的点到x轴距离的最大值为6,求b的值27(12分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:的度数是:360-60-75-138=87故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.2、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键3、A【解析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可【详解】解:A、x2÷x8=x-6,故该选项正确;B、aa2=a3,故该选项错误;C、(a2)3=a6,故该选项错误;D、(3a)3=27a3,故该选项错误;故选A【点睛】此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则4、C【解析】直接利用随机事件、必然事件、不可能事件分别分析得出答案【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键5、C【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、B【解析】根据圆周角得出AOB60°,进而利用弧长公式解答即可【详解】解:ACB30°,AOB60°,的长2,故选B【点睛】此题考查弧长的计算,关键是根据圆周角得出AOB60°7、A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可 设某种书包原价每个x元,可得:0.8x10=90考点:由实际问题抽象出一元一次方程8、A【解析】依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可【详解】A、2x3x5x,故A正确;B、2x3x6x2,故B错误;C、(x3)2x6,故C错误;D、x3与x2不是同类项,不能合并,故D错误故选A【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键9、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB【详解】DEF=BCD=90°,D=D,DEFDCB,DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,由勾股定理求得DE=40cm,BC=15米,AB=AC+BC=1.5+15=16.5(米)故答案为16.5m【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型10、D【解析】先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可【详解】解:A、主视图不是中心对称图形,故A错误;B、左视图不是中心对称图形,故B错误;C、主视图不是中心对称图形,是轴对称图形,故C错误;D、俯视图既是中心对称图形又是轴对称图形,故D正确故选:D【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键11、C【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】67500一共5位,从而67500=6.75×104,故选C.12、A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离故选A二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,在RtDCE中,由勾股定理求得,所以DB=;在RtABC中,由勾股定理得;在RtDGB中,由锐角三角函数求得,;设AF=DF=x,则FG= ,在RtDFG中,根据勾股定理得方程=,解得,从而求得.的值详解:如图所示,过点D作DGAB于点G.根据折叠性质,可知AEFDEF,AE=DE=2,AF=DF,CE=AC-AE=1,在RtDCE中,由勾股定理得,DB=;在RtABC中,由勾股定理得;在RtDGB中,;设AF=DF=x,得FG=AB-AF-GB=,在RtDFG中,即=,解得,=.故答案为.点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题14、5【解析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.15、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,能让两盏灯泡同时发光的概率,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比16、1【解析】利用ACDCBD,对应线段成比例就可以求出【详解】CDAB,ACB=90°,ACDCBD,CD=1【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键17、【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案详解:等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,从中随机抽取一张,卡片上的图形是中心对称图形的概率是:故答案为点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键18、1【解析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解【详解】解:设A港与B港相距xkm,根据题意得: ,解得:x=1,则A港与B港相距1km故答案为:1【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)n 【解析】(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N的坐标代入y=x2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y3,当x=3时y2,据此列出关于n的不等式组,解之可得【详解】(1)A(2,2),B(3,2),D(2,3),ADBC1, 则点 C(3,3),故答案为:(3,3);(2)把(0,0)(n,0)代入 yx2+bx+c 得: ,解得:,抛物线解析式为 yx2+nx(x)2+,顶点 N 坐标为(,);(3)由(2)把 x代入 yx2()2 ,抛物线的顶点在函数 yx2的图象上运动;(4)根据题意,得:当 x2 时 y3,当 x3 时 y2, 即,解得:<n<【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力20、(1)详见解析;(2)CEF=45°【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出DCOACB90°,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明CEF=CFE即可求解试题解析:(1)证明:如图1中,连接OCOAOC,12,CD是O切线,OCCD,DCO90°,3290°,AB是直径,1B90°,3B(2)解:CEFECDCDE,CFEBFDB,CDEFDB,ECDB,CEFCFE,ECF90°,CEFCFE45°21、5【解析】本题涉及零指数幂、负整数指数幂、绝对值、乘方四个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式=4-8×0.125+1+1=4-1+2=5【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算22、(1)y=x2+2x+3;(2)y=x1;(3)P()或P(4.5,0);当t=时,SMDN的最大值为【解析】(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;(2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于ADBC,设直线AD的解析式为y=-x+b,即可得到结论;(3)由BCAD,得到DAB=CBA,全等只要当或时,PBCABD,解方程组得D(4,5),求得设P的坐标为(x,0),代入比例式解得或x=4.5,即可得到或P(4.5,0);过点B作BFAD于F,过点N作NEAD于E,在RtAFB中,BAF=45°,于是得到sinBAF 求得求得 由于于是得到即可得到结果【详解】(1)由题意知: 解得 二次函数的表达式为 (2)在 中,令y=0,则 解得: B(3,0),由已知条件得直线BC的解析式为y=x+3,ADBC,设直线AD的解析式为y=x+b,0=1+b,b=1,直线AD的解析式为y=x1;(3)BCAD,DAB=CBA,只要当:或时,PBCABD,解得D(4,5), 设P的坐标为(x,0),即或 解得或x=4.5,或P(4.5,0),过点B作BFAD于F,过点N作NEAD于E,在RtAFB中, sinBAF 又 当时,的最大值为【点睛】属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.23、证明见解析;【解析】根据HL定理证明RtABCRtDEF,根据全等三角形的性质证明即可【详解】,BE为公共线段,CE+BE=BF+BE,即 又,在与中, AC=DF.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键24、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90°OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90°AF为圆O的切线,即AF与O的位置关系是相切(2)AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90°,证出OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90°,OFBC,AEO=90°,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90°,OAF=90°,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90°,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,3×4=1×AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质25、(1),;(2)2,2,1,1(答案不唯一);(3)7或1【解析】(1),am23n2,b2mn故答案为m23n2,2mn(2)设m1,n2,am23n21,b2mn2故答案为1,2,1,2(答案不唯一)(3)由题意,得am23n2,b2mn22mn,且m、n为正整数,m2,n1或m1,n2,a223×127,或a123×22126、(1);(2)14ay45a;(3)b2或10.【解析】(1)将P(4,-1)代入,可求出解析式(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得(3)观察图象可得,当0x1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可【详解】解:(1)由此抛物线顶点为P(4,-1),所以ya(x-4)2-1ax28ax16a1,即16a13,解得a=, b=-8a=-2所以抛物线解析式为:;(2)由此抛物线经过点C(4,1),所以 一116a4b3,即b4a1因为抛物线的开口向上,则有 其对称轴为直线,而 所以当1x2时,y随着x的增大而减小当x1时,y=a+(4a+1)+3=4+5a当x2时,y=4a-2(4a+1)+3=1-4a所以当1x2时,14ay45a;(3)当a1时,抛物线的解析式为yx2bx3抛物线的对称轴为直线由抛物线图象可知,仅当x0,x1或x时,抛物线上的点可能离x轴最远分别代入可得,当x0时,y=3当x=1时,yb4当x=-时,y=-+3当一0,即b0时,3yb+4,由b46解得b2当0-1时,即一2b0时,b2120,抛物线与x轴无公共点由b46解得b2(舍去);当 ,即b2时,b4y3,由b46解得b10综上,b2或10【点睛】本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同27、 【解析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率