天津市宝坻区第二中学2023届中考数学五模试卷含解析.doc
-
资源ID:87997859
资源大小:925KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
天津市宝坻区第二中学2023届中考数学五模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在RtABC中,C90°,那么sinB等于()ABCD2若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()ABCD3为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A1种B2种C3种D4种4下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD5第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )ABCD6如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:( )甲:作的角平分线;以为圆心,长为半径画弧,交于点,点即为所求;乙:过点作平行于的直线;过点作平行于的直线,交于点,点即为所求A两人都正确B两人都错误C甲正确,乙错误D甲错误,乙正确7如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30°,弦EFAB,则EF的长度为( )A2B2CD28有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC9二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) ABCD10如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OAOB,则k的值为()A2B4C4D2二、填空题(本大题共6个小题,每小题3分,共18分)11满足的整数x的值是_12如图,在菱形ABCD中,于E,则菱形ABCD的面积是_132018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_人14如图,菱形ABCD中,AB=4,C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_15如图,在ABC中,ABAC,A36°, BD平分ABC交AC于点D,DE平分BDC交BC于点E,则 16的系数是_,次数是_三、解答题(共8题,共72分)17(8分)先化简,再计算: 其中18(8分)如图,一次函数y=kx+b(k、b为常数,k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n0)的图象在第二象限交于点CCDx轴,垂足为D,若OB=2OA=3OD=1(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求CDE的面积;(3)直接写出不等式kx+b的解集19(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x0)元,让利后的购物金额为y元(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由20(8分)如图,在O中,AB为直径,OCAB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED(1)求证:DE是O的切线;(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径21(8分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;CD总计/tA200Bx300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m0),其余线路的运费不变,试讨论总运费最小的调动方案.22(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率23(12分)计算:4sin30°+(1)0|2|+()224全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有 人,图表中的 , .统计图中,类所对应的扇形的圆心角的度数是 度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90°,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.2、D【解析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变此题比较简单,但计算时一定要细心3、B【解析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-x,x、y都是正整数,x=5时,y=4;x=10时,y=1;购买方案有2种故选B【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.4、A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误故选A点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴5、B【解析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解【详解】有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B【点睛】本题考查了简单事件的概率用到的知识点为:概率=所求情况数与总情况数之比6、A【解析】根据题意先画出相应的图形,然后进行推理论证即可得出结论【详解】甲的作法如图一:为等边三角形,AD是的角平分线 由甲的作法可知, 在和中, 故甲的作法正确;乙的作法如图二: 在和中, 故乙的作法正确;故选:A【点睛】本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键7、B【解析】本题考查的圆与直线的位置关系中的相切连接OC,EC所以EOC=2D=60°,所以ECO为等边三角形又因为弦EFAB所以OC垂直EF故OEF=30°所以EF=OE=28、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.9、D【解析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解【详解】二次函数图象开口方向向上,a>0,对称轴为直线 b<0,二次函数图形与轴有两个交点,则>0,当x=1时y=a+b+c<0,的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.10、C【解析】试题分析:作ACx轴于点C,作BDx轴于点D则BDO=ACO=90°,则BOD+OBD=90°,OAOB,BOD+AOC=90°,BOD=AOC,OBDAOC,=(tanA)2=2,又SAOC=×2=1,SOBD=2,k=-1故选C考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征二、填空题(本大题共6个小题,每小题3分,共18分)11、3,1【解析】直接得出23,15,进而得出答案【详解】解:23,15,的整数x的值是:3,1故答案为:3,1【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键12、【解析】根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积【详解】sinD= AD=11四边形ABCD是菱形AD=CD=11菱形ABCD的面积=11×8=96cm1故答案为:96cm1【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键13、4.02×1【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:40.2万=4.02×1,故答案为:4.02×1【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值14、【解析】第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度旋转到此菱形就又回到了原图故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长【详解】解:菱形ABCD中,AB=4,C=60°,ABD是等边三角形, BO=DO=2,AO=,第一次旋转的弧长=,第一、二次旋转的弧长和=+=,第三次旋转的弧长为:,故经过6次这样的操作菱形中心O所经过的路径总长为:2×(+)=故答案为:【点睛】本题考查菱形的性质,翻转的性质以及解直角三角形的知识15、【解析】试题分析:因为ABC中,ABAC,A36°所以ABC=ACB=72°因为BD平分ABC交AC于点D所以ABD=CBD=36°=A因为DE平分BDC交BC于点E所以CDE=BDE=36°=A所以AD=BD=BC根据黄金三角形的性质知,,,所以考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比当底角被平分时,角平分线分对边也成黄金比,16、 1 【解析】根据单项式系数及次数的定义进行解答即可【详解】根据单项式系数和次数的定义可知,的系数是,次数是1【点睛】本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键三、解答题(共8题,共72分)17、;【解析】根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可【详解】解:= = 当时,原式=【点睛】此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键18、(1)y=2x+1;y=;(2)140;(3)x10,或4x0;【解析】(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.(2)联立方程组求解出交点坐标即可.(3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.【详解】(1)由已知,OA=6,OB=1,OD=4,CDx轴,OBCD,ABOACD,CD=20,点C坐标为(4,20),n=xy=80.反比例函数解析式为:y=,把点A(6,0),B(0,1)代入y=kx+b得:,解得:.一次函数解析式为:y=2x+1,(2)当=2x+1时,解得,x1=10,x2=4,当x=10时,y=8,点E坐标为(10,8),SCDE=SCDA+SEDA=.(3)不等式kx+b,从函数图象上看,表示一次函数图象不低于反比例函数图象,由图象得,x10,或4x0.【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.19、(1)y1=0.85x,y2=0.75x+50 (x200),y2=x (0x200);(2)x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【解析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案【详解】(1)甲商场写出y关于x的函数解析式y1=0.85x, 乙商场写出y关于x的函数解析式y2=200+(x200)×0.75=0.75x+50(x200),即y2=x(0x200);(2)由y1y2,得0.85x0.75x+50,解得x500,即当x500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1y2,得0.85x0.75x+500,解得x500,即当x500时,到甲商场购物会更省钱;综上所述:x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【点睛】本题考查了一次函数的应用,分类讨论是解题关键20、(1)答案见解析;(2)AB=1BE;(1)1【解析】试题分析:(1)先判断出OCF+CFO=90°,再判断出OCF=ODF,即可得出结论;(2)先判断出BDE=A,进而得出EBDEDA,得出AE=2DE,DE=2BE,即可得出结论;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论试题解析:(1)证明:连结OD,如图EF=ED,EFD=EDFEFD=CFO,CFO=EDFOCOF,OCF+CFO=90°OC=OD,OCF=ODF,ODC+EDF=90°,即ODE=90°,ODDE点D在O上,DE是O的切线;(2)线段AB、BE之间的数量关系为:AB=1BE证明如下:AB为O直径,ADB=90°,ADO=BDEOA=OD,ADO=A,BDE=A,而BED=DEA,EBDEDA,RtABD中,tanA=,=,AE=2DE,DE=2BE,AE=4BE,AB=1BE;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=xOF=1,OE=1+2x在RtODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,x=(舍)或x=2,圆O的半径为1点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出EBDEDA是解答本题的关键21、(1)见解析;(2)w=2x+9200,方案见解析;(3)0<m<2时,(2)中调运方案总运费最小;m=2时,在40x240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小.【解析】(1)根据题意可得解(2)w与x之间的函数关系式为:w=20(240x)+25(x40)+15x+18(300x);列不等式组解出40x240,可由w随x的增大而增大,得出总运费最小的调运方案(3)根据题意得出w与x之间的函数关系式,然后根据m的取值范围不同分别分析得出总运费最小的调运方案【详解】解:(1)填表:依题意得:20(240x)+25(x40)=15x+18(300x).解得:x=200.(2)w与x之间的函数关系为:w=20(240x)+25(x40)+15x+18(300x)=2x+9200.依题意得: 40x240在w=2x+9200中,2>0,w随x的增大而增大,故当x=40时,总运费最小,此时调运方案为如表. (3)由题意知w=20(240x)+25(x40)+(15-m)x+18(300x)=(2m)x+92000<m<2时,(2)中调运方案总运费最小;m=2时,在40x240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小,其调运方案如表二.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出w与x之间的函数关系式,并注意分类讨论思想的应用.22、(1)不可能事件;(2).【解析】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为考点:列表法与树状图法23、1.【解析】按照实数的运算顺序进行运算即可.【详解】原式 =1【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.24、(1)150、45、36;(2)28.8°;(3)450人【解析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得【详解】解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为故答案为:28.8°;(3)(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小