安徽省合肥市庐江县重点中学2023年中考数学模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数y=(x+2)21的图象的对称轴是()A直线x=1B直线x=1C直线x=2D直线x=22不等式42x0的解集在数轴上表示为( )ABCD3已知x=2,则代数式(7+4)x2+(2+)x+ 的值是()A0BC2+D24将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是( )ABCD5某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A平均数B中位数C众数D方差6如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )ABCD7如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是( )A点AB点BC点CD点D8一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A B C D 9一元二次方程x25x6=0的根是()Ax1=1,x2=6Bx1=2,x2=3Cx1=1,x2=6Dx1=1,x2=610用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A4B6C16D811如图,平行四边形ABCD的顶点A、B、D在O上,顶点C在O直径BE上,连结AE,若E=36°,则ADC的度数是( )A44°B53°C72°D54°12下列运算正确的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式x2x=_14对于实数x,我们规定x表示不大于x的最大整数,例如1.1=1,3=3,2.2=3,若=5,则x的取值范围是_15若关于x的分式方程有增根,则m的值为_16已知a0,那么|2a|可化简为_17如图,ABCD中,E是BA的中点,连接DE,将DAE沿DE折叠,使点A落在ABCD内部的点F处若CBF25°,则FDA的度数为_18将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(3,4),与y轴交于点C(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EBBC上的一个动点,当点P在线段BC上时,连接EP,若EPBC,请直接写出线段BP与线段AE的关系;过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M,如果点M恰好在坐标轴上,请直接写出此时点P的坐标20(6分)综合与实践:概念理解:将ABC 绕点 A 按逆时针方向旋转,旋转角记为 (0°90°),并使各边长变为原来的 n 倍,得到ABC,如图,我们将这种变换记为,n,: 问题解决:(2)如图,在ABC 中,BAC=30°,ACB=90°,对ABC 作变换,n得到ABC,使点 B,C,C在同一直线上,且四边形 ABBC为矩形,求 和 n 的值拓广探索:(3)在ABC 中,BAC=45°,ACB=90°,对ABC作变换 得到ABC,则四边形 ABBC为正方形21(6分)已知关于x的方程(a1)x2+2x+a11若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根22(8分)解不等式:123(8分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图;(3)“自行乘车”对应扇形的圆心角的度数是度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?24(10分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中16月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台若今年2月份这种品牌手机的销售额为6400万元,求m的值25(10分)如图,AB是O的直径,点E是上的一点,DBC=BED(1)求证:BC是O的切线;(2)已知AD=3,CD=2,求BC的长26(12分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DFBE求证:(1)AFDCEB(2)四边形ABCD是平行四边形27(12分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_人,扇形统计图中D类所对应扇形的圆心角为_度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据二次函数顶点式的性质解答即可.【详解】y=(x+2)21是顶点式,对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.2、D【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得【详解】移项,得:-2x-4,系数化为1,得:x2,故选D【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变3、C【解析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2时,(7+4)x2+(2+)x+ (7+4)(2)2+(2+)(2)+ (7+4)(7-4)+1+ 49-48+1+2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算4、D【解析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【详解】由题意得,a=-.设旋转180°以后的顶点为(x,y),则x=2×0-(-2)=2,y=2×3-5=1,旋转180°以后的顶点为(2,1),旋转180°以后所得图象的解析式为:.故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.5、B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数故选B.6、C【解析】试题解析:四边形ABCD是平行四边形, 故选C.7、B【解析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】, ,因为0.2680.7321.268,所以 表示的点与点B最接近,故选B.8、B【解析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.9、D【解析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1”来解题【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D【点睛】本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法本题运用的是因式分解法10、A【解析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8,底面半径=8÷2【详解】解:由题意知:底面周长=8,底面半径=8÷2=1故选A【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长11、D【解析】根据直径所对的圆周角为直角可得BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.【详解】根据直径所对的圆周角为直角可得BAE=90°,根据E=36°可得B=54°,根据平行四边形的性质可得ADC=B=54°.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.12、D【解析】根据幂的乘方:底数不变,指数相乘合并同类项即可解答.【详解】解:A、B两项不是同类项,所以不能合并,故A、B错误,C、D考查幂的乘方运算,底数不变,指数相乘 ,故D正确;【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、x(x-1)【解析】x2x= x(x-1).故答案是:x(x-1).14、11x1【解析】根据对于实数x我们规定x不大于x最大整数,可得答案【详解】由=5,得: ,解得11x1,故答案是:11x1【点睛】考查了解一元一次不等式组,利用x不大于x最大整数得出不等式组是解题关键15、±【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值【详解】方程两边都乘x-3,得x-2(x-3)=m2,原方程增根为x=3,把x=3代入整式方程,得m=±【点睛】解决增根问题的步骤:确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值16、3a【解析】根据二次根式的性质和绝对值的定义解答【详解】a0,|2a|a2a|3a|3a【点睛】本题主要考查了根据二次根式的意义化简二次根式规律总结:当a0时,a;当a0时,a解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号17、50°【解析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明BCGDAE,从而7=6=25°,进而可求FDA得度数.【详解】延长BF交CD于G由折叠知,BE=CF, 1=2, 7=8,3=4.1+2=3+4,1=2=3=4,CDAB,3=5,1=5,在BCG和DAE中1=5,C=A,BC=AD,BCGDAE,7=6=25°,8=7=25°,FDA=50°.故答案为50°.【点睛】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明BCGDAE是解答本题的关键.18、【解析】试题分析:解:设y=x+b,3=2+b,解得:b=1函数解析式为:y=x+1故答案为y=x+1考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=x2+x+2;(2)y=2x+2;(3)线段BP与线段AE的关系是相互垂直;点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,4)【解析】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,即可求解;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;(3)AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM=PM即可求解【详解】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,解得:a=,b=,故函数的表达式为y=x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)E是点B关于y轴的对称点,E坐标为(3,4),则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,AEBC,而EPBC,BPAE而BP=AE,线段BP与线段AE的关系是相互垂直;设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MMBC,kMM=,直线MM的方程为:y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),由题意得:PM=PM=2m,PM2=42+m2=(2m)2,此式不成立,或PM2=m2+(2m+2)2=(2m)2,解得:m=4±2,故点P的坐标为(4±2,8±4);当P点在线段BE上时,点P坐标为(m,4),点M坐标为(m,2),则PM=6,直线MM的方程不变,为y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),PM2=m2+(6+m)2=(2m)2,解得:m=0,或;或PM2=42+42=(6)2,无解;故点P的坐标为(0,4)或(,4);综上所述:点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,4)【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系20、(1);(2);(3)【解析】(1)根据定义可知ABCABC,再根据相似三角形的面积之比等于相似比的平方即可;(2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;(3)根据四边形 ABBC为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案【详解】解:(1)ABC的边长变为了ABC的n倍,ABCABC,故答案为:(2)四边形是矩形,在中,(3)若四边形 ABBC为正方形,则,又在ABC中,AB=,故答案为:【点睛】本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解,n的意义是解题的关键21、(3)a=,方程的另一根为;(2)答案见解析.【解析】(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:当a=3时,为一元一次方程;当a3时,利用b24ac3求出a的值,再代入解方程即可【详解】(3)将x2代入方程,得,解得:a将a代入原方程得,解得:x3,x22a,方程的另一根为;(2)当a3时,方程为2x3,解得:x3.当a3时,由b24ac3得44(a3)23,解得:a2或3当a2时, 原方程为:x22x33,解得:x3x23;当a3时, 原方程为:x22x33,解得:x3x23综上所述,当a3,3,2时,方程仅有一个根,分别为3,3,3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.22、x【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得【详解】2(23x)3(x1)6,46x3x+36,6x3x643,9x1,x【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变23、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人【解析】(1)本次抽查的学生人数:18÷15%120(人);(2)A:结伴步行人数12042301830(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360°×126°;(4)估计该校“家人接送”上学的学生约有:2000×25%500(人)【详解】解:(1)本次抽查的学生人数:18÷15%120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数12042301830(人),补全条形统计图如下: “结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;(3)“自行乘车”对应扇形的圆心角的度数360°×126°,故答案为126;(4)估计该校“家人接送”上学的学生约有:2000×25%500(人),答:该校“家人接送”上学的学生约有500人【点睛】本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键24、(1)p0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1【解析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可【详解】(1)设pkx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得: 解得:,p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w(50x+2600)(0.1x+3.8)5x2+70x+98805(x7)2+10125,当x7时,w最大10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x12时,y100,p5,1月份的售价为:100(1m%)元,则2月份的售价为:0.8×100(1m%)元;1月份的销量为:5×(11.5m%)万台,则2月份的销量为:5×(11.5m%)+1.5万台;0.8×100(1m%)×5×(11.5m%)+1.56400,解得:m1%(舍去),m2%,m=1,答:m的值为1【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键25、 (1)证明见解析(2)BC=【解析】(1)AB是O的直径,得ADB=90°,从而得出BAD=DBC,即ABC=90°,即可证明BC是O的切线;(2)可证明ABCBDC,则,即可得出BC=【详解】(1)AB是O的切直径,ADB=90°,又BAD=BED,BED=DBC,BAD=DBC,BAD+ABD=DBC+ABD=90°,ABC=90°,BC是O的切线;(2)解:BAD=DBC,C=C,ABCBDC,即BC2=ACCD=(AD+CD)CD=10,BC=考点:1.切线的判定;2.相似三角形的判定和性质.26、证明见解析【解析】证明:(1)DFBE,DFE=BEF又AF=CE,DF=BE,AFDCEB(SAS)(2)由(1)知AFDCEB,DAC=BCA,AD=BC,ADBC四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明AFDCEB(2)由AFDCEB,容易证明AD=BC且ADBC,可根据一组对边平行且相等的四边形是平行四边形27、48;105°;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案试题解析:(1)12÷25%=48(人) 14÷48×360°=105° 48(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1A1A2A2A1A1A2A2由上表可得:考点:统计图、概率的计算