安徽省宿州十三校2022-2023学年中考联考数学试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,反比例函数y的图象与直线yx的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则ABC的面积为( )A8 B6 C4 D22如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD3如图,函数y=2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,ACAB,且AC=AB,则点C的坐标为()A(2,1)B(1,2)C(1,3)D(3,1)4某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )ABCD5把抛物线y2x2向上平移1个单位,得到的抛物线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)26下列计算正确的是( )A3a26a2=3B(2a)(a)=2a2C10a10÷2a2=5a5D(a3)2=a67如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米ABC+1D38如图,在O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:ABCD; AOB=4ACD;弧AD=弧BD;PO=PD,其中正确的个数是()A4B1C2D39如图,点O在第一象限,O与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O的坐标是()A(6,4)B(4,6)C(5,4)D(4,5)10已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D5二、填空题(共7小题,每小题3分,满分21分)11如图,已知RtABC中,B=90°,A=60°,AC=2+4,点M、N分别在线段AC、AB上,将ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当DCM为直角三角形时,折痕MN的长为_12反比例函数的图象经过点和,则 _ 13要使式子有意义,则的取值范围是_14圆柱的底面半径为1,母线长为2,则它的侧面积为_(结果保留)15中国古代的数学专著九章算术有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻互换其中一只,恰好一样重”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为_16已知,则_17如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到OAB的位置时,则点O到点O所经过的路径长为_三、解答题(共7小题,满分69分)18(10分)计算:(1)2018+()2|2 |+4sin60°;19(5分)如图,在ABC中,CDAB于点D,tanA2cosBCD,(1)求证:BC2AD;(2)若cosB,AB10,求CD的长.20(8分)计算:12+(3.14)0|1|21(10分)如图,已知ABC,请用尺规作图,使得圆心到ABC各边距离相等(保留作图痕迹,不写作法)22(10分)计算:(-1)-1-+|1-3|23(12分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?24(14分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵经过统计,在整个过程中,每棵树苗的种植成本如图所示设种植A种树苗的工人为x名,种植B种树苗的工人为y名求y与x之间的函数关系式;设种植的总成本为w元,求w与x之间的函数关系式;若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则ABC的面积=2|k|=2×4=1故选A考点:反比例函数系数k的几何意义2、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90°,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键3、D【解析】过点C作CDx轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明ABOCAD,得到ADOB2,CDAO1,则C点坐标可求.【详解】如图,过点C作CDx轴与D.函数y=2x+2的图象分别与x轴,y轴交于A,B两点,当x0时,y2,则B(0,2);当y0时,x1,则A(1,0).ACAB,ACAB,BAOCAD90°,ABOCAD.在ABO和CAD中,ABOCAD,ADOB2,CDOA1,ODOAAD123,C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.4、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】,故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键6、B【解析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a26a2=3a2,不正确;选项B,单项式乘单项式的运算可得(2a)(a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得(a3)2=a6,不正确故答案选B考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式7、C【解析】由题意可知,AC=1,AB=2,CAB=90°据勾股定理则BC=m;AC+BC=(1+)m. 答:树高为(1+)米故选C.8、D【解析】根据垂径定理,圆周角的性质定理即可作出判断【详解】P是弦AB的中点,CD是过点P的直径ABCD,弧AD=弧BD,故正确,正确;AOB=2AOD=4ACD,故正确P是OD上的任意一点,因而不一定正确故正确的是:故选:D【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.9、D【解析】过O'作O'CAB于点C,过O'作O'Dx轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在RtO'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标【详解】如图,过O作OCAB于点C,过O作ODx轴于点D,连接OB,O为圆心,AC=BC,A(0,2),B(0,8),AB=82=6,AC=BC=3,OC=83=5,O与x轴相切,OD=OB=OC=5,在RtOBC中,由勾股定理可得OC=4,P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.10、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B二、填空题(共7小题,每小题3分,满分21分)11、或【解析】分析:依据DCM为直角三角形,需要分两种情况进行讨论:当CDM=90°时,CDM是直角三角形;当CMD=90°时,CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长详解:分两种情况:如图,当CDM=90°时,CDM是直角三角形,在RtABC中,B=90°,A=60°,AC=2+4,C=30°,AB=AC=+2,由折叠可得,MDN=A=60°,BDN=30°,BN=DN=AN,BN=AB=,AN=2BN=,DNB=60°,ANM=DNM=60°,AMN=60°,AN=MN=;如图,当CMD=90°时,CDM是直角三角形,由题可得,CDM=60°,A=MDN=60°,BDN=60°,BND=30°,BD=DN=AN,BN=BD,又AB=+2,AN=2,BN=,过N作NHAM于H,则ANH=30°,AH=AN=1,HN=,由折叠可得,AMN=DMN=45°,MNH是等腰直角三角形,HM=HN=,MN=,故答案为:或点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等12、-1【解析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值【详解】解:反比例函数y=的图象经过点(1,6),6=,解得k=6,反比例函数的解析式为y=点(m,-3)在此函数图象上上,-3=,解得m=-1故答案为-1【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键13、【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x0,解得:x2,故答案为x2.14、4 【解析】根据圆柱的侧面积公式,计算即可【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2rl=2×1×2=4故答案为:4【点睛】题考查了圆柱的侧面积公式应用问题,是基础题15、【解析】设每只雀、燕的重量各为x两,y两,由题意得: 故答案是:或 16、3【解析】依据可设a=3k,b=2k,代入化简即可【详解】,可设a=3k,b=2k,=3故答案为3.【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项两端的两项叫做比例的外项,中间的两项叫做比例的内项17、【解析】点O到点O所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长根据弧长公式计算即可【详解】解:扇形OAB的圆心角为30°,半径为1,AB弧长=点O到点O所经过的路径长=故答案为:【点睛】本题考查了弧长公式:也考查了旋转的性质和圆的性质三、解答题(共7小题,满分69分)18、1.【解析】分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果详解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=1点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算19、(1)证明见解析;(2)CD2.【解析】(1)根据三角函数的概念可知tanA,cosBCD,根据tanA2cosBCD即可得结论;(2)由B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可【详解】(1)tanA,cosBCD,tanA2cosBCD,2·,BC2AD.(2)cosB,BC2AD,.AB10,AD×104,BD1046,BC8,CD2.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.20、1.【解析】直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案【详解】解:原式=1+41(1)=1+41+1=1【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.21、见解析【解析】分别作ABC和ACB的平分线,它们的交点O满足条件【详解】解:如图,点O为所作【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)22、-1【解析】试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.试题解析:原式=-1-=-1.23、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.【解析】(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.【详解】解:(1)设A型足球x个,则B型足球(100-x)个, 40x +60(100-x)=5200 ,解得:x=40 , 100-x=100-40=60个,答:A型足球进了40个,B型足球进了60个(2)设A型足球x个,则B型足球(100-x)个,100-x ,解得:x60 ,设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,k=-20,y随x的增大而减小,当x=60时,y最小=4800元.【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.24、(1);(2);【解析】(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)分别求出种植A,B,C三种树苗的成本,然后相加即可;求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率【详解】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,根据题意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名采访到种植C种树苗工人的概率为:=【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键