安徽省巢湖市名校2023年中考猜题数学试卷含解析.doc
-
资源ID:87998220
资源大小:1.16MB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
安徽省巢湖市名校2023年中考猜题数学试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+32化简的结果是()ABCD3如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A5B10C10D154如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()ABCD5如图: 在中,平分,平分,且交于,若,则等于( )A75B100 C120 D1256如图,是的外接圆,已知,则的大小为ABCD7对于二次函数,下列说法正确的是( )A当x>0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点8从3、1、2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )ABCD9如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A着B沉C应D冷10如图的立体图形,从左面看可能是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如果不等式组的解集是x2,那么m的取值范围是_12如图,一次函数y=x2的图象与反比例函数y=(k0)的图象相交于A、B两点,与x轴交与点C,若tanAOC=,则k的值为_13已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_14一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为_15将直尺和直角三角尺按如图方式摆放若,则_ 16一只蚂蚁从数轴上一点 A出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_17若反比例函数y=的图象位于第一、三象限,则正整数k的值是_三、解答题(共7小题,满分69分)18(10分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长19(5分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?20(8分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.21(10分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,求此时观光船到大桥段的距离的长(参考数据:,).22(10分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”当的半径为1时在点、中,的“特征点”是_;点P在直线上,若点P为的“特征点”求b的取值范围;的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围23(12分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°0.60,cos 37°0.80,tan 37°0.75)24(14分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图请 根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键2、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=×=×(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.3、B【解析】作点E关于BC的对称点E,连接EG交BC于点F,此时四边形EFGH周长取最小值,过点G作GGAB于点G,如图所示,AE=CG,BE=BE,EG=AB=10,GG=AD=5,EG=,C四边形EFGH=2EG=10,故选B【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键4、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可详解:从左边看竖直叠放2个正方形故选:C点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项5、B【解析】根据角平分线的定义推出ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值【详解】解:CE平分ACB,CF平分ACD,ACE=ACB,ACF=ACD,即ECF=(ACB+ACD)=90°,EFC为直角三角形,又EFBC,CE平分ACB,CF平分ACD,ECB=MEC=ECM,DCF=CFM=MCF,CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1故选:B【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出ECF为直角三角形6、A【解析】解:AOB中,OA=OB,ABO=30°;AOB=180°-2ABO=120°;ACB=AOB=60°;故选A7、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.8、B【解析】解:画树状图得:共有6种等可能的结果,其中(1,2),(3,2)点落在第四项象限,P点刚好落在第四象限的概率=故选B点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键9、A【解析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键10、A【解析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、m1【解析】分析:先解第一个不等式,再根据不等式组的解集是x1,从而得出关于m的不等式,解不等式即可详解:解第一个不等式得,x1,不等式组的解集是x1,m1,故答案为m1点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了12、1【解析】【分析】如图,过点A作ADx轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x2的图象与反比例函数y=(k0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.【详解】如图,过点A作ADx轴,垂足为D,tanAOC=,设点A的坐标为(1a,a),一次函数y=x2的图象与反比例函数y=(k0)的图象相交于A、B两点,a=1a2,得a=1,1=,得k=1,故答案为:1【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答13、1【解析】先根据概率公式得到,解得.【详解】根据题意得,解得.故答案为:.【点睛】本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.14、2【解析】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2r=,解得r=2cm考点:圆锥侧面展开扇形与底面圆之间的关系15、80°.【解析】由于直尺外形是矩形,根据矩形的性质可知对边平行,所以4=3,再根据外角的性质即可求出结果.【详解】解:如图所示,依题意得:4=3,4=2+1=80°3=80°.故答案为80°.【点睛】本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.16、6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为6,当往左移动时,此时点A 表示的点为8.17、1【解析】由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可【详解】解:反比例函数的图象在一、三象限,2k0,即k2又k是正整数,k的值是:1故答案为:1【点睛】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)4【解析】(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得ABCD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)连接 EC,易证BEC 是直角三角形,解直角三角形即可解决问题.【详解】(1)证明:四边形 ABCD 是平行四边形,ABCD,AB=CD,AE=AB,AE=CD,AECD,四边形 ACDE 是平行四边形(2)如图,连接 ECAC=AB=AE,EBC 是直角三角形,cosB=,BE=6,BC=2,EC=4【点睛】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型19、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式20、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案进货时,经销商可获利最大,最大利润是13000元【解析】(1)根据利润y=(A售价A进价)x+(B售价B进价)×(100x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可【详解】解:(1)y=(900700)x+(160100)×(100x)=140x+6000.由700x+100(100x)40000得x50.y与x之间的函数关系式为y=140x+6000(x50)(2)令y12600,即140x+600012600,解得x47.1.又x50,经销商有以下三种进货方案:方案A品牌(块)B品牌(块)485249515050(3)1400,y随x的增大而增大.x=50时y取得最大值.又140×50+6000=13000,选择方案进货时,经销商可获利最大,最大利润是13000元【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用21、5.6千米【解析】设PD的长为x千米,DA的长为y千米,在RtPAD中利用正切的定义得到tan18°=,即y=0.33x,同样在RtPDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可【详解】设PD的长为x千米,DA的长为y千米,在RtPAD中,tanDPA=,即tan18°=,y=0.33x,在RtPDB中,tanDPB=,即tan53°=,y+5.6=1.33x,0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案22、(1)、;(2)或,【解析】据若,则点P为的“特征点”,可得答案;根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案【详解】解:,点是的“特征点”;,点是的“特征点”;,点不是的“特征点”;故答案为、如图1,在上,若存在的“特征点”点P,点O到直线的距离直线交y轴于点E,过O作直线于点H因为在中,可知可得同理可得的取值范围是:如图2,设C点坐标为,直线,线段MN上的所有点都不是的“特征点”,即,解得或,点C的横坐标的取值范围是或,故答案为 :(1)、;(2)或,【点睛】本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了23、35km【解析】试题分析:如图作CHAD于H设CH=xkm,在RtACH中,可得AH=,在RtCEH中,可得CH=EH=x,由CHBD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题试题解析:如图,作CHAD于H设CH=xkm,在RtACH中,A=37°,tan37°=,AH=,在RtCEH中,CEH=45°,CH=EH=x,CHAD,BDAD,CHBD,AC=CB,AH=HD,=x+5,x=15,AE=AH+HE=+1535km,E处距离港口A有35km24、(1)图形见解析,216件;(2)【解析】(1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得【详解】(1)4个班作品总数为:件,所以D班级作品数量为:36-6-12-10=8;估计全校共征集作品×36=324件条形图如图所示,(2)男生有3名,分别记为A1,A2,A3,女生记为B,列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种所以选取的两名学生恰好是一男一女的概率为【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识注意掌握扇形统计图与条形统计图的对应关系用到的知识点为:概率=所求情况数与总情况数之比