四川省阆中学市第二中学2022-2023学年中考数学猜题卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1对于点A(x1,y1),B(x2,y2),定义一种运算:例如,A(5,4),B(2,3),若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】A在同一条直线上 B在同一条抛物线上C在同一反比例函数图象上 D是同一个正方形的四个顶点2今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A83×105B0.83×106C8.3×106D8.3×1073下列分式中,最简分式是( )ABCD4函数的图像位于( )A第一象限B第二象限C第三象限D第四象限5下列图形中,是中心对称但不是轴对称图形的为()ABCD6一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD7如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,则DE:EC=( )A2:5B2:3C3:5D3:282017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为()A2.536×104人B2.536×105人C2.536×106人D2.536×107人9把抛物线y2x2向上平移1个单位,得到的抛物线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)210若 | =,则一定是( )A非正数B正数C非负数D负数二、填空题(本大题共6个小题,每小题3分,共18分)11如图:图象均是以P0为圆心,1个单位长度为半径的扇形,将图形分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形的圆心依次为P1P2P3,第二次移动后图形的圆心依次为P4P5P6,依此规律,P0P2018=_个单位长度12若x2+kx+81是完全平方式,则k的值应是_13将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_14|-3|=_;15若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的侧面面积为_cm(结果保留)16如图,在正方形中,对角线与相交于点,为上一点,为的中点若的周长为18,则的长为_三、解答题(共8题,共72分)17(8分)如图,已知O是以AB为直径的ABC的外接圆,过点A作O的切线交OC的延长线于点D,交BC的延长线于点E(1)求证:DAC=DCE;(2)若AB=2,sinD=,求AE的长18(8分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.19(8分)如图,在等边ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE求证:AEBC20(8分)如图,AB是O的直径,点F,C是O上两点,且,连接AC,AF,过点C作CDAF交AF延长线于点D,垂足为D(1)求证:CD是O的切线;(2)若CD=2,求O的半径 21(8分)如图,AB是O的直径,CD切O于点D,且BDOC,连接AC(1)求证:AC是O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和)22(10分)计算:22+|14sin60°|23(12分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30°. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60°,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长24如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?参考答案一、选择题(共10小题,每小题3分,共30分)1、A。【解析】对于点A(x1,y1),B(x2,y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又,。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,互不重合的四点C,D,E,F在同一条直线上。故选A。2、C【解析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1| a| 10|)的记数法.【详解】830万=8300000=8.3×106.故选C【点睛】本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.3、A【解析】试题分析:选项A为最简分式;选项B化简可得原式=;选项C化简可得原式=;选项D化简可得原式=,故答案选A.考点:最简分式.4、D【解析】根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案【详解】解:函数的图象位于第四象限故选:D【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键5、C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C考点:中心对称图形;轴对称图形6、C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 7、B【解析】四边形ABCD是平行四边形,ABCDEAB=DEF,AFB=DFEDEFBAF,DE:AB=2:5AB=CD,DE:EC=2:3故选B8、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】2536000人=2.536×106人故选C【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键10、A【解析】根据绝对值的性质进行求解即可得.【详解】|-x|=-x,又|-x|1,-x1,即x1,即x是非正数,故选A【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;2018=3×672+2,点P2018在正南方向上,P0P2018=672+1=1,故答案为1【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解探寻规律要认真观察、仔细思考,善用联想来解决这类问题12、±1【解析】试题分析:利用完全平方公式的结构特征判断即可确定出k的值解:x2+kx+81是完全平方式,k=±1故答案为±1考点:完全平方式13、【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.14、1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案解答:解:|-1|=1故答案为115、12【解析】根据圆锥的侧面展开图是扇形可得,该圆锥的侧面面积为:12,故答案为12.16、【解析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论【详解】解:四边形是正方形,在中,为的中点,的周长为18,在中,根据勾股定理,得,在中,为的中点,又为的中位线,故答案为:.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中三、解答题(共8题,共72分)17、(1)证明见解析;(2)【解析】(1)由切线的性质可知DAB=90°,由直角所对的圆周为90°可知ACB=90°,根据同角的余角相等可知DAC=B,然后由等腰三角形的性质可知B=OCB,由对顶角的性质可知DCE=OCB,故此可知DAC=DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由DAC=DCE,D=D可知DECDCA,故此可得到DC2=DEAD,故此可求得DE=,于是可求得AE=【详解】解:(1)AD是圆O的切线,DAB=90°AB是圆O的直径,ACB=90°DAC+CAB=90°,CAB+ABC=90°,DAC=BOC=OB,B=OCB又DCE=OCB,DAC=DCE(2)AB=2,AO=1sinD=,OD=3,DC=2在RtDAO中,由勾股定理得AD=DAC=DCE,D=D,DECDCA,即解得:DE=,AE=ADDE=18、(1);(2)【解析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率19、见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,B=ACB=60°,根据旋转的性质得出CD=CE,DCE=60°,求出BCD=ACE,根据SAS推出BCDACE,根据全等得出EAC=B=60°,求出EAC=ACB,根据平行线的判定得出即可.试题解析:ABC是等边三角形,AC=BC,B=ACB=60°,线段CD绕点C顺时针旋转60°得到CE,CD=CE,DCE=60°,DCE=ACB,即BCD+DCA=DCA+ACE,BCD=ACE,在BCD与ACE中,BCDACE,EAC=B=60°,EAC=ACB,AEBC.20、(2)1【解析】试题分析:(1)连结OC,由=,根据圆周角定理得FAC=BAC,而OAC=OCA,则FAC=OCA,可判断OCAF,由于CDAF,所以OCCD,然后根据切线的判定定理得到CD是O的切线;(2)连结BC,由AB为直径得ACB=90°,由=,得BOC=60°,则BAC=30°,所以DAC=30°,在RtADC中,利用含30°的直角三角形三边的关系得AC=2CD=1,在RtACB中,利用含30°的直角三角形三边的关系得BC=AC=1,AB=2BC=8,所以O的半径为1试题解析:(1)证明:连结OC,如图,=FAC=BACOA=OCOAC=OCAFAC=OCAOCAFCDAFOCCDCD是O的切线(2)解:连结BC,如图AB为直径ACB=90°=BOC=×180°=60°BAC=30°DAC=30°在RtADC中,CD=2AC=2CD=1在RtACB中,BC=AC=×1=1AB=2BC=8O的半径为1.考点:圆周角定理, 切线的判定定理,30°的直角三角形三边的关系21、(1)证明见解析;(2);【解析】(1)连接OD,先根据切线的性质得到CDO=90°,再根据平行线的性质得到AOC=OBD,COD=ODB,又因为OB=OD,所以OBD=ODB,即AOC=COD,再根据全等三角形的判定与性质得到CAO=CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,RtODC与RtOAC是含30°的直角三角形,从而得到DOB=60°,即BOD为等边三角形,再用扇形的面积减去BOD的面积即可.【详解】(1)证明:连接OD,CD与圆O相切,ODCD,CDO=90°,BDOC,AOC=OBD,COD=ODB,OB=OD,OBD=ODB,AOC=COD,在AOC和DOC中,AOCEOC(SAS),CAO=CDO=90°,则AC与圆O相切;(2)AB=OC=4,OB=OD,RtODC与RtOAC是含30°的直角三角形,DOC=COA=60°,DOB=60°,BOD为等边三角形,图中阴影部分的面积=扇形DOB的面积DOB的面积,=【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.22、-1【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案【详解】解:原式1【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键23、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90°,B=DCE=30°,DAC=CDE=20°ADC是等边三角形DCA=20°DCA=CDE=20°DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90°,B =30°AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90°,DCM+BCN=180°-90°=90°,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20°,F1DBE,F1F1D=ABC=20°,BF1=DF1,F1BD=ABC=30°,F1DB=90°,F1DF1=ABC=20°,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20°,点D是角平分线上一点,DBC=DCB=×20°=30°,BG=BC=,BD=3CDF1=180°-BCD=180°-30°=150°,CDF1=320°-150°-20°=150°,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20°,点D是角平分线上一点,DEAB,DBC=BDE=ABD=×20°=30°,又BD=3,BE=×3÷cos30°=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或224、羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(1004x)米;然后根据矩形的面积公式列出方程试题解析:设AB的长度为x米,则BC的长度为(1004x)米 根据题意得 (1004x)x=400,解得 x1=20,x2=1 则1004x=20或1004x=2 221, x2=1舍去 即AB=20,BC=20考点:一元二次方程的应用