安徽省合肥市第四十二中学2022-2023学年中考三模数学试题含解析.doc
-
资源ID:87998429
资源大小:734KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
安徽省合肥市第四十二中学2022-2023学年中考三模数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,O的直径AB的长为10,弦AC长为6,ACB的平分线交O于D,则CD长为( )A7BCD92罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大如图是对某球员罚球训练时命中情况的统计:下面三个推断:当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1其中合理的是( )ABCD3如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BEDF的是()AAECFBBEDFCEBFFDEDBEDBFD4如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )A12cmB20cmC24cmD28cm5如图,四边形ABCD中,AB=CD,ADBC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )ABCD36若点A(1,a)和点B(4,b)在直线y2xm上,则a与b的大小关系是()AabBabCabD与m的值有关7下列分式中,最简分式是( )ABCD8如图所示,在平面直角坐标系中A(0,0),B(2,0),AP1B是等腰直角三角形,且P1=90°,把AP1B绕点B顺时针旋转180°,得到BP2C;把BP2C绕点C顺时针旋转180°,得到CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A(4030,1)B(4029,1)C(4033,1)D(4035,1)9如图,在ABC中,ACB=90°,点D为AB的中点,AC=3,cosA=,将DAC沿着CD折叠后,点A落在点E处,则BE的长为()A5B4C7D510关于x的不等式的解集为x3,那么a的取值范围为()Aa3Ba3Ca3Da3二、填空题(本大题共6个小题,每小题3分,共18分)11若向北走5km记作5km,则+10km的含义是_12如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且APB=90°下列结论:PA=PB;当OA=OB时四边形OAPB是正方形;四边形OAPB的面积和周长都是定值;连接OP,AB,则ABOP其中正确的结论是_(把你认为正确结论的序号都填上)13已知关于X的一元二次方程有实数根,则m的取值范围是_14矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为_15如图所示,在菱形ABCD中,AB=4,BAD=120°,AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合当点E、F在BC、CD上滑动时,则CEF的面积最大值是_162的平方根是_.三、解答题(共8题,共72分)17(8分)先化简,再求值:,其中18(8分)先化简,再求值:,其中x=119(8分)问题背景:如图1,等腰ABC中,ABAC,BAC120°,作ADBC于点D,则D为BC的中点,BADBAC60°,于是迁移应用:如图2,ABC和ADE都是等腰三角形,BACDAE120°,D,E,C三点在同一条直线上,连接BD(1)求证:ADBAEC;(2)若AD2,BD3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,ABC120°,在ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF(3)证明:CEF是等边三角形;(4)若AE4,CE1,求BF的长20(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值21(8分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60°求ABC的度数;求证:AE是O的切线;当BC=4时,求劣弧AC的长22(10分)已知抛物线y=x26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值23(12分)如图,已知是的外接圆,圆心在的外部,求的半径.24根据图中给出的信息,解答下列问题:放入一个小球水面升高 ,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】作DFCA,交CA的延长线于点F,作DGCB于点G,连接DA,DB由CD平分ACB,根据角平分线的性质得出DF=DG,由HL证明AFDBGD,CDFCDG,得出CF=7,又CDF是等腰直角三角形,从而求出CD=【详解】解:作DFCA,垂足F在CA的延长线上,作DGCB于点G,连接DA,DBCD平分ACB,ACD=BCDDF=DG,弧AD=弧BD,DA=DBAFD=BGD=90°,AFDBGD,AF=BG易证CDFCDG,CF=CGAC=6,BC=8,AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)CF=7,CDF是等腰直角三角形,(这里由CFDG是正方形也可得)CD=故选B2、B【解析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷5000.822,但“罚球命中”的概率不一定是0.822,故错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2故正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故错误故选:B【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.3、B【解析】由四边形ABCD是平行四边形,可得AD/BC,AD=BC,然后由AE=CF,EBF=FDE,BED=BFD均可判定四边形BFDE是平行四边形,则可证得BE/DF,利用排除法即可求得答案【详解】四边形ABCD是平行四边形,AD/BC,AD=BC,A、AE=CF,DE=BF,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;B、BE=DF,四边形BFDE是等腰梯形,本选项不一定能判定BE/DF;C、AD/BC,BED+EBF=180°,EDF+BFD=180°,EBF=FDE,BED=BFD,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;D、AD/BC,BED+EBF=180°,EDF+BFD=180°,BED=BFD,EBF=FDE,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF故选B【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键4、C【解析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:2r=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm故选C【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长5、B【解析】四边形AECD是平行四边形,AE=CD,AB=BE=CD=3,AB=BE=AE,ABE是等边三角形,B=60°,的弧长=.故选B.6、A【解析】【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.【详解】因为,点A(1,a)和点B(4,b)在直线y2xm上,-2<0,所以,y随x的增大而减小.因为,1<4,所以,a>b.故选A【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.7、A【解析】试题分析:选项A为最简分式;选项B化简可得原式=;选项C化简可得原式=;选项D化简可得原式=,故答案选A.考点:最简分式.8、D【解析】根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决【详解】解:由题意可得,点P1(1,1),点P2(3,-1),点P3(5,1),P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,即P2018的坐标为(4035,-1),故选:D【点睛】本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标9、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可【详解】解:连接AE,AC=3,cosCAB=,AB=3AC=9,由勾股定理得,BC=6,ACB=90°,点D为AB的中点,CD=AB=,SABC=×3×6=9,点D为AB的中点,SACD=SABC=,由翻转变换的性质可知,S四边形ACED=9,AECD,则×CD×AE=9,解得,AE=4,AF=2,由勾股定理得,DF=,AF=FE,AD=DB,BE=2DF=7,故选C【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等10、D【解析】分析:先解第一个不等式得到x3,由于不等式组的解集为x3,则利用同大取大可得到a的范围详解:解不等式2(x-1)4,得:x3,解不等式a-x0,得:xa,不等式组的解集为x3,a3,故选D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到二、填空题(本大题共6个小题,每小题3分,共18分)11、向南走10km【解析】分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论.详解: 向北走5km记作5km, +10km表示向南走10km.故答案是:向南走10km.点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.12、【解析】过P作PMy轴于M,PNx轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证APMBPN,可对进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当当OA=OB时,OA=OB=1,然后可对作出判断,由APMBPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对作出判断【详解】过P作PMy轴于M,PNx轴于NP(1,1),PN=PM=1x轴y轴,MON=PNO=PMO=90°,MPN=360°-90°-90°-90°=90°,则四边形MONP是正方形,OM=ON=PN=PM=1,MPA=APB=90°,MPA=NPBMPA=NPB,PM=PN,PMA=PNB,MPANPB,PA=PB,故正确MPANPB,AM=BN,OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2当OA=OB时,OA=OB=1,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故正确MPANPB,四边形OAPB的面积=四边形AONP的面积+PNB的面积=四边形AONP的面积+PMA的面积=正方形PMON的面积=2OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故错误,AOB+APB=180°,点A、O、B、P共圆,且AB为直径,所以ABOP,故错误故答案为:【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,关键是推出AM=BN和推出OA+OB=OM+ON13、m3且m2【解析】试题解析:一元二次方程有实数根4-4(m-2)0且m-20解得:m3且m2.14、6或2【解析】试题分析:根据P点的不同位置,此题分两种情况计算:点P在CD上;点P在AD上点P在CD上时,如图:PD=1,CD=AB=9,CP=6,EF垂直平分PB,四边形PFBE是邻边相等的矩形即正方形,EF过点C,BF=BC=6,由勾股定理求得EF=;点P在AD上时,如图:先建立相似三角形,过E作EQAB于Q,PD=1,AD=6,AP=1,AB=9,由勾股定理求得PB=1,EF垂直平分PB,1=2(同角的余角相等),又A=EQF=90°,ABPEFQ(两角对应相等,两三角形相似),对应线段成比例:,代入相应数值:,EF=2综上所述:EF长为6或2考点:翻折变换(折叠问题)15、 【解析】解:如图,连接AC,四边形ABCD为菱形,BAD=120°,1+EAC=60°,3+EAC=60°,1=3,BAD=120°,ABC=60°,ABC和ACD为等边三角形,4=60°,AC=AB在ABE和ACF中,1=3,AC=AC,ABC=4,ABEACF(ASA),SABE=SACF,S四边形AECF=SAEC+SACF=SAEC+SABE=SABC,是定值,作AHBC于H点,则BH=2,S四边形AECF=SABC=BCAH=BC=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又SCEF=S四边形AECFSAEF,则此时CEF的面积就会最大,SCEF=S四边形AECFSAEF=×× =故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据ABEACF,得出四边形AECF的面积是定值是解题的关键16、【解析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根)【详解】解:2的平方根是故答案为【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根三、解答题(共8题,共72分)17、,【解析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】原式,将a1代入得,原式,故答案为.【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.18、-2.【解析】根据分式的运算法化解即可求出答案【详解】解:原式=,当x=1时,原式=【点睛】熟练运用分式的运算法则19、(1)见解析;(2)CD =;(3)见解析;(4)【解析】试题分析:迁移应用:(1)如图2中,只要证明DAB=CAE,即可根据SAS解决问题;(2)结论:CD=AD+BD由DABEAC,可知BD=CE,在RtADH中,DH=ADcos30°= AD,由AD=AE,AHDE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:(3)如图3中,作BHAE于H,连接BE由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出ADC=AEC=120°,推出FEC=60°,推出EFC是等边三角形;(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在RtBHF中,由BFH=30°,可得=cos30°,由此即可解决问题试题解析:迁移应用:(1)证明:如图2,BAC=DAE=120°,DAB=CAE,在DAE和EAC中,DA=EA,DAB=EAC,AB=AC,DABEAC,(2)结论:CD=AD+BD理由:如图2-1中,作AHCD于HDABEAC,BD=CE,在RtADH中,DH=ADcos30°=AD,AD=AE,AHDE,DH=HE,CD=DE+EC=2DH+BD=AD+BD=拓展延伸:(3)如图3中,作BHAE于H,连接BE四边形ABCD是菱形,ABC=120°,ABD,BDC是等边三角形,BA=BD=BC,E、C关于BM对称,BC=BE=BD=BA,FE=FC,A、D、E、C四点共圆,ADC=AEC=120°,FEC=60°,EFC是等边三角形,(4)AE=4,EC=EF=1,AH=HE=2,FH=3,在RtBHF中,BFH=30°, =cos30°,BF=20、(1)30;(2)当x3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时【解析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:30027030千米;(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题【详解】解:(1)根据图象信息:货车的速度V货,轿车到达乙地的时间为货车出发后4.5小时,轿车到达乙地时,货车行驶的路程为:4.5×60270(千米),此时,货车距乙地的路程为:30027030(千米)所以轿车到达乙地后,货车距乙地30千米故答案为30;(2)设CD段函数解析式为ykx+b(k0)(2.5x4.5)C(2.5,80),D(4.5,300)在其图象上,解得,CD段函数解析式:y110x195(2.5x4.5);易得OA:y60x,解得,当x3.9时,轿车与货车相遇;(3)当x2.5时,y货150,两车相距150807020,由题意60x(110x195)20或110x19560x20,解得x3.5或4.3小时答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时【点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键21、(1)60°(2)证明略;(3)【解析】(1)根据ABC与D都是劣弧AC所对的圆周角,利用圆周角定理可证出ABC=D=60°; (2)根据AB是O的直径,利用直径所对的圆周角是直角得到ACB=90°,结合ABC=60°求得BAC=30°,从而推出BAE=90°,即OAAE,可得AE是O的切线;(3)连结OC,证出OBC是等边三角形,算出BOC=60°且O的半径等于4,可得劣弧AC所对的圆心角AOC=120°,再由弧长公式加以计算,可得劣弧AC的长【详解】(1)ABC与D都是弧AC所对的圆周角,ABC=D=60°; (2)AB是O的直径,ACB=90°BAC=30°,BAE=BAC+EAC=30°+60°=90°,即BAAE,AE是O的切线;(3)如图,连接OC,OB=OC,ABC=60°,OBC是等边三角形,OB=BC=4,BOC=60°,AOC=120°,劣弧AC的长为=【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.22、(1)C(2,0),A(1,4),B(1,9);(2)t5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,n)在抛物线y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立, 解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A(1,4),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),OD=OF=2 FOD=90°,OFD=ODF=45° OC=OF=2,FOC=90°,CF=2,OFC=OCF=45°, DFC=DFO+OFC=45°+45°=90°,CFAB PAB的面积是ABC面积的2倍,ABPM=ABCF, PM=2CF=1 PNx轴,FDO=45°,DGN=45°,PGM=45°在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题意,舍去,m=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识23、4【解析】已知ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在RtOBH中,用半径表示出OH的长,即可用勾股定理求得半径的长【详解】作于点,则直线为的中垂线,直线过点,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.24、详见解析【解析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可【详解】解:(1)设一个小球使水面升高x厘米,由图意,得2x=2116,解得x=1设一个大球使水面升高y厘米,由图意,得1y=2116,解得:y=2所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm(1)设应放入大球m个,小球n个,由题意,得,解得:答:如果要使水面上升到50cm,应放入大球4个,小球6个