安徽省合肥市肥西县重点名校2022-2023学年中考数学仿真试卷含解析.doc
-
资源ID:87998855
资源大小:1.02MB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
安徽省合肥市肥西县重点名校2022-2023学年中考数学仿真试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知一元二次方程1(x3)(x+2)=0,有两个实数根x1和x2(x1<x2),则下列判断正确的是( )A2<x1<x2<3Bx1<2<3<x2C2<x1<3<x2Dx1<2<x2<32有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A平均数B中位数C众数D方差3在平面直角坐标系xOy中,若点P(3,4)在O内,则O的半径r的取值范围是( )A0r3Br4C0r5Dr54在下列实数中,3,0,2,1中,绝对值最小的数是()A3B0CD15中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()ABCD6某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,1老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”如果令其中i1,2,1;j1,2,1则a1,1a1,2+a2,1a2,2+a3,1a3,2+a1,1a1,2表示的实际意义是()A同意第1号或者第2号同学当选的人数B同时同意第1号和第2号同学当选的人数C不同意第1号或者第2号同学当选的人数D不同意第1号和第2号同学当选的人数7为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示下面有四个推断:年用水量不超过180m1的该市居民家庭按第一档水价交费;年用水量不超过240m1的该市居民家庭按第三档水价交费;该市居民家庭年用水量的中位数在150180m1之间;该市居民家庭年用水量的众数约为110m1 其中合理的是( )ABCD8将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )ABCD92017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A6.5×105 B6.5×106 C6.5×107 D65×10510小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A50,50B50,30C80,50D30,5011已知关于x的一元二次方程3x2+4x5=0,下列说法正确的是( )A方程有两个相等的实数根B方程有两个不相等的实数根C没有实数根D无法确定12若是新规定的某种运算符号,设ab=b 2 -a,则-2x=6中x的值()A4B8C2D-2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y(k0,x0)的图象经过顶点C、D,若点C的横坐标为5,BE3DE,则k的值为_14函数y=+的自变量x的取值范围是_15如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为_米(结果保留根号)16ABC中,A、B都是锐角,若sinA,cosB,则C_17已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1x2时,y1与y2的大小关系为_.18如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。20(6分)如图,在RtABC中,C90°,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧(1)求证:AB为C的切线(2)求图中阴影部分的面积21(6分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由22(8分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“”表示该项数据已丢失)x101ax21ax2+bx+c72(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当ADM与BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出BAD和DCO的数量关系,并说明理由23(8分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,且(1)用含的代数式表示;(2)连结交于点,若,求的长24(10分)如图,O是RtABC的外接圆,C=90°,tanB=,过点B的直线l是O的切线,点D是直线l上一点,过点D作DECB交CB延长线于点E,连接AD,交O于点F,连接BF、CD交于点G(1)求证:ACBBED;(2)当ADAC时,求 的值;(3)若CD平分ACB,AC=2,连接CF,求线段CF的长25(10分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1求a的值;当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围26(12分)如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论27(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1)(1)求抛物线的解析式;(2)猜想EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】设y=-(x3)(x+2),y1=1(x3)(x+2)根据二次函数的图像性质可知y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x3)(x+2),y1=1(x3)(x+2)y=0时,x=-2或x=3,y=-(x3)(x+2)的图像与x轴的交点为(-2,0)(3,0),1(x3)(x+2)=0,y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,-1<0,两个抛物线的开口向下,x123x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.2、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用3、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围【详解】点P的坐标为(3,4),OP1点P(3,4)在O内,OPr,即r1故选D【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系4、B【解析】|3|=3,|=,|0|=0,|2|=2,|1|=1,3210,绝对值最小的数是0,故选:B5、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解: EFAB, CEFCAB, ,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.6、B【解析】先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加【详解】第1,2,3,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,a1,1来确定,是否同意第2号同学当选依次由a1,2,a2,2,a3,2,a1,2来确定,a1,1a1,2+a2,1a2,2+a3,1a3,2+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,故选B【点睛】本题考查了推理应用题,题目比较新颖,是基础题7、B【解析】利用条形统计图结合中位数和中位数的定义分别分析得出答案【详解】由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),×100%=7%5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;5万个数据的中间是第25000和25001的平均数,该市居民家庭年用水量的中位数在120-150之间,故此选项错误;该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,故选B【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键8、C【解析】试题分析:抛物线向右平移1个单位长度,平移后解析式为:,再向上平移1个单位长度所得的抛物线解析式为:故选C考点:二次函数图象与几何变换9、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数【详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.10、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元) 故选A点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系11、B【解析】试题分析:先求出=424×3×(5)=760,即可判定方程有两个不相等的实数根故答案选B.考点:一元二次方程根的判别式12、C【解析】解:由题意得:,x=±1故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】过点D作DFBC于点F,由菱形的性质可得BCCD,ADBC,可证四边形DEBF是矩形,可得DFBE,DEBF,在RtDFC中,由勾股定理可求DE1,DF3,由反比例函数的性质可求k的值【详解】如图,过点D作DFBC于点F,四边形ABCD是菱形,BCCD,ADBC,DEB90°,ADBC,EBC90°,且DEB90°,DFBC,四边形DEBF是矩形,DFBE,DEBF,点C的横坐标为5,BE3DE,BCCD5,DF3DE,CF5DE,CD2DF2+CF2,259DE2+(5DE)2,DE1,DFBE3,设点C(5,m),点D(1,m+3),反比例函数y图象过点C,D,5m1×(m+3),m,点C(5,),k5×,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键14、x1且x3【解析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可【详解】根据二次根式和分式有意义的条件可得: 解得:且 故答案为:且【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.15、100+100【解析】【分析】由已知可得ACD=MCA=45°,B=NCB=30°,继而可得DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.【详解】MN/AB,MCA=45°,NCB=30°,ACD=MCA=45°,B=NCB=30°,CDAB,CDA=CDB=90°,DCB=60°,CD=100米,AD=CD=100米,DB=CDtan60°=CD=100米,AB=AD+DB=100+100(米), 故答案为:100+100【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形注意方程思想与数形结合思想的应用 16、60°【解析】先根据特殊角的三角函数值求出A、B的度数,再根据三角形内角和定理求出C即可作出判断【详解】ABC中,A、B都是锐角sinA=,cosB=,A=B=60°C=180°-A-B=180°-60°-60°=60°故答案为60°【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单17、y1>y1【解析】分析:直接利用一次函数的性质分析得出答案详解:直线经过第一、二、四象限,y随x的增大而减小,x1x1,y1与y1的大小关系为:y1y1故答案为:点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键18、.【解析】找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论【详解】从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,所画三角形时等腰三角形的概率是,故答案是:【点睛】考查的是概率公式,熟记随机事件A的概率P(A)事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、-2【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得【详解】原式= = ,x±1且x0,在-1x2中符合条件的x的值为x=2,则原式=- =-2.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.20、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90°,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键21、有触礁危险,理由见解析.【解析】试题分析:过点P作PDAC于D,在RtPBD和RtPAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险试题解析:有触礁危险理由:过点P作PDAC于D设PD为x,在RtPBD中,PBD=90°-45°=45°BD=PD=x在RtPAD中,PAD=90°-60°=30°AD=AD=AB+BDx=12+xx=6(+1)18渔船不改变航线继续向东航行,有触礁危险【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键22、 (1) y=x24x+2;(2) 点B的坐标为(5,7);(1)BAD和DCO互补,理由详见解析.【解析】(1)由(1,1)在抛物线y=ax2上可求出a值,再由(1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由ADM和BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作ANx轴,交BD于点N,则AND=DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合ABD=NBA,可证出ABDNBA,根据相似三角形的性质可得出ANB=DAB,再由ANB+AND=120°可得出DAB+DCO=120°,即BAD和DCO互补【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(1,7)、(0,2)代入y=x2+bx+c,得:,解得:,抛物线的表达式为y=x24x+2;(2)ADM和BDM同底,且ADM与BDM的面积比为2:1,点A到抛物线的距离与点B到抛物线的距离比为2:1抛物线y=x24x+2的对称轴为直线x=2,点A的横坐标为0,点B到抛物线的距离为1,点B的横坐标为1+2=5,点B的坐标为(5,7)(1)BAD和DCO互补,理由如下:当x=0时,y=x24x+2=2,点A的坐标为(0,2),y=x24x+2=(x2)22,点D的坐标为(2,2)过点A作ANx轴,交BD于点N,则AND=DCO,如图所示设直线BD的表达式为y=mx+n(m0),将B(5,7)、D(2,2)代入y=mx+n,解得:,直线BD的表达式为y=1x2当y=2时,有1x2=2,解得:x=,点N的坐标为(,2)A(0,2),B(5,7),D(2,2),AB=5,BD=1,BN=,=又ABD=NBA,ABDNBA,ANB=DABANB+AND=120°,DAB+DCO=120°,BAD和DCO互补【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明ABDNBA是解(1)的关键.23、(1);(2)【解析】(1)连接OC,根据切线的性质得到OCDE,可以证明ADOC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有FAO=60°,再根据弧长公式计算即可【详解】解:(1)如图示,连结,是的切线,又,即(2)如图示,连结,四边形是平行四边形,四边形是菱形,是等边三角形,的长【点睛】本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键24、(1)详见解析;(2) ;(3).【解析】(1)只要证明ACB=E,ABC=BDE即可;(2)首先证明BE:DE:BC=1:2:4,由GCBGDF,可得=;(3)想办法证明AB垂直平分CF即可解决问题.【详解】(1)证明:如图1中,DECB,ACB=E=90°,BD是切线,ABBD,ABD=90°,ABC+DBE=90°,BDE+DBE=90°,ABC=BDE,ACBBED;(2)解:如图2中,ACBBED;四边形ACED是矩形,BE:DE:BC=1:2:4,DFBC,GCBGDF,=;(3)解:如图3中,tanABC=,AC=2,BC=4,BE=4,DE=8,AB=2,BD=4,易证DBEDBF,可得BF=4=BC,AC=AF=2,CFAB,设CF交AB于H,则CF=2CH=2×.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型25、 (1) ac3;(3)a=1;m或m【解析】(1)设A (p,q)则B (-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p3,a3,且C(3,-1),求得p±,根据三角形的面积公式列方程即可得到结果;由可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4)得到这些MN的解析式yx+(-1x3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到()若-1x13且x33,()若x1-1且-1x33:列方程组即可得到结论【详解】(1)设A (p,q)则B (-p,-q),把A、B坐标代入解析式可得:,3ap3+3c=3即p3,3,ac3,3,ac3;(3)c=-1,p3,a3,且C(3,-1),p±,SABC=×3×1=1,a=1;由可知:抛物线解析式为y=x3-3mx-1,M(-1,1)、N(3,4)MN:yx+(-1x3),依题,只需联立在-1x3内只有一个解即可,x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,=(3m+)3+113且c=-3,抛物线yx3(3m+)x与x轴有两个交点,且交y轴于负半轴不妨设方程x3(3m+)x3的两根分别为x1,x3(x1x3)则x1+x33m+,x1x3方程x3(3m+)x3在-1x3内只有一个解故分两种情况讨论:()若-1x13且x33:则即:,可得:m()若x1-1且-1x33:则即:,可得:m,综上所述,m或m【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键26、(1)见解析(2)见解析【解析】(1)根据AAS证AFEDBE,推出AF=BD,即可得出答案(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可【详解】解:(1)证明:AFBC, AFE=DBEE是AD的中点,AD是BC边上的中线,AE=DE,BD=CD在AFE和DBE中,AFE=DBE,FEA=BED, AE=DE,AFEDBE(AAS)AF=BDAF=DC(2)四边形ADCF是菱形,证明如下:AFBC,AF=DC,四边形ADCF是平行四边形ACAB,AD是斜边BC的中线,AD=DC平行四边形ADCF是菱形27、(1)y=x2+3x;(2)EDB为等腰直角三角形;证明见解析;(3)(,2)或(,2)【解析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FMAN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标【详解】解:(1)在矩形OABC中,OA=4,OC=3,A(4,0),C(0,3),抛物线经过O、A两点,抛物线顶点坐标为(2,3),可设抛物线解析式为y=a(x2)2+3,把A点坐标代入可得0=a(42)2+3,解得a=,抛物线解析式为y=(x2)2+3,即y=x2+3x;(2)EDB为等腰直角三角形证明:由(1)可知B(4,3),且D(3,0),E(0,1),DE2=32+12=10,BD2=(43)2+32=10,BE2=42+(31)2=20,DE2+BD2=BE2,且DE=BD,EDB为等腰直角三角形;(3)存在理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得,解得,直线BE解析式为y=x+1,当x=2时,y=2,F(2,2),当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,点M的纵坐标为2或2,在y=x2+3x中,令y=2可得2=x2+3x,解得x=,点M在抛物线对称轴右侧,x2,x=,M点坐标为(,2);在y=x2+3x中,令y=2可得2=x2+3x,解得x=,点M在抛物线对称轴右侧,x2,x=,M点坐标为(,2);当AF为平行四边形的对角线时,A(4,0),F(2,2),线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),设M(t,t2+3t),N(x,0),则t2+3t=2,解得t=,点M在抛物线对称轴右侧,x2,t2,t=,M点坐标为(,2);综上可知存在满足条件的点M,其坐标为(,2)或(,2)【点睛】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论本题考查知识点较多,综合性较强,难度较大