山东省日照实验中学2023年中考五模数学试题含解析.doc
-
资源ID:87998993
资源大小:776KB
全文页数:23页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省日照实验中学2023年中考五模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,矩形是由三个全等矩形拼成的,与,分别交于点,设,的面积依次为,若,则的值为( )A6B8C10D122小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个3一元二次方程x2+x2=0的根的情况是()A有两个不相等的实数根B有两个相等的实数根C只有一个实数根D没有实数根42018的相反数是( )AB2018C-2018D5某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )ABCD6一元二次方程mx2+mx0有两个相等实数根,则m的值为()A0B0或2C2D27在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分BAC的是( ) A图2B图1与图2C图1与图3D图2与图38九章算术是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )ABCD9-2的倒数是( )A-2BCD210有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,611下列四个实数中,比5小的是( )ABCD12函数yax+b与ybx+a的图象在同一坐标系内的大致位置是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,ABCD,CDBC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_.14如图,PA、PB是O的切线,A、B为切点,AC是O的直径,P= 40°,则BAC= .15一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角_。16每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_17关于x的一元二次方程x22xm10有两个相等的实数根,则m的值为_18如图,O的直径CD垂直于AB,AOC=48°,则BDC=度三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)山地自行车越来越受中学生的喜爱一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?20(6分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量21(6分)计算:(2)3+(3)×(4)2+2(3)2÷(2)22(8分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点;连接PO,交AC于点E,求的最大值;过点P作PFAC,垂足为点F,连接PC,是否存在点P,使PFC中的一个角等于CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.23(8分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆已知所有观光车每天的管理费是1100元(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24(10分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度(结果精确到0.1米,参考数据:sin33°0.54,cos33°0.84,tan33°0.65)25(10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85100;第二组100115;第三组115130;第四组130145;第五组145160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100130分评为“C”,130145分评为“B”,145160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率26(12分)如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3)(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1;(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状(无须说明理由)27(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由条件可以得出BPQDKMCNH,可以求出BPQ与DKM的相似比为,BPQ与CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出【详解】矩形AEHC是由三个全等矩形拼成的,AB=BD=CD,AEBFDGCH,BQP=DMK=CHN,ABQADM,ABQACH,EF=FG= BD=CD,ACEH,四边形BEFD、四边形DFGC是平行四边形, BEDFCG,BPQ=DKM=CNH, 又BQP=DMK=CHN,BPQDKM,BPQCNH,即,即,解得:,故选:B【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键2、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一3、A【解析】=12-4×1×(-2)=9>0,方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当>0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当<0时,一元二次方程没有实数根. 4、C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.5、A【解析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.6、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值【详解】一元二次方程mx1+mx0有两个相等实数根,m14m×()m1+1m0,解得:m0或m1,经检验m0不合题意,则m1故选C【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根7、C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,BAC为公共角,AMNAEF,3=4,AM=AE,AN=AF,MF=EN,又MDF=EDN,FDMNDE,DM=DE,又AD是公共边,ADMADE,1=2,即AD平分BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.8、C【解析】根据题意相等关系:8×人数-3=物品价值,7×人数+4=物品价值,可列方程组:,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9、B【解析】根据倒数的定义求解.【详解】-2的倒数是-故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握10、C【解析】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)÷5=4.8,故选C【点睛】本题考查众数;算术平均数;中位数11、A【解析】首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案【详解】解:A、56,51161,15,故此选项正确;B、 ,故此选项错误;C、67,516,故此选项错误;D、45,故此选项错误;故选A【点睛】考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.12、B【解析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案【详解】分四种情况:当a0,b0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;当a0,b0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合故选B【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:当k0,b0,函数y=kx+b的图象经过第一、二、三象限;当k0,b0,函数y=kx+b的图象经过第一、三、四象限;当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;当k0,b0时,函数y=kx+b的图象经过第二、三、四象限二、填空题:(本大题共6个小题,每小题4分,共24分)13、4或1【解析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长【详解】如图:因为AC=2,点A是斜边EF的中点,所以EF=2AC=4,如图:因为BD=5,点D是斜边EF的中点,所以EF=2BD=1,综上所述,原直角三角形纸片的斜边长是4或1,故答案是:4或1【点睛】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解14、20°【解析】根据切线的性质可知PAC90°,由切线长定理得PAPB,P40°,求出PAB的度数,用PACPAB得到BAC的度数【详解】解:PA是O的切线,AC是O的直径,PAC90°PA,PB是O的切线,PAPBP40°,PAB(180°P)÷2(180°40°)÷270°,BACPACPAB90°70°20°故答案为20°【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数15、288°【解析】母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.【详解】解:如图所示,在RtSOA中,SO=9,SA=15;则: 设侧面属开图扇形的国心角度数为n,则由 得n=288°故答案为:288°.【点睛】本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.16、2【解析】设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an2n2”,再代入n2029即可求出结论【详解】设第n层有an个三角形(n为正整数),a22,a22+23,a32×2+25,a42×3+27,an2(n2)+22n2当n2029时,a20292×202922故答案为2【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an2n2”是解题的关键17、2.【解析】试题分析:已知方程x22x=0有两个相等的实数根,可得:44(m1)4m80,所以,m2.考点:一元二次方程根的判别式.18、20【解析】解:连接OB,O的直径CD垂直于AB,=,BOC=AOC=40°,BDC=AOC=×40°=20°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元【解析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价进价,即可得出关于y的一元一次方程,解之即可得出结论【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900×(110%)y=35%y,解得:y=600,答:每辆山地自行车的进价是600元【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20、现在平均每天清雪量为1立方米【解析】分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x立方米,由题意,得解得 x=1经检验x=1是原方程的解,并符合题意答:现在平均每天清雪量为1立方米点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.21、-17.1【解析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的【详解】解:原式8+(3)×189÷(2),8149÷(2),62+4.1,17.1【点睛】此题要注意正确掌握运算顺序以及符号的处理22、(1);(2)有最大值1;(2,3)或(,)【解析】(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据勾股定理的逆定理得到ABC是以ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,PCF=2BAC=DGC+CDG,情况二,FPC=2BAC,解直角三角形即可得到结论【详解】(1)当x=0时,y=2,即C(0,2),当y=0时,x=4,即A(4,0),将A,C点坐标代入函数解析式,得,解得,抛物线的解析是为; (2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N,直线PNy轴,PEMOEC,把x=0代入y=-x+2,得y=2,即OC=2,设点P(x,-x2+x+2),则点M(x,-x+2),PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,=,0x4,当x=2时,=有最大值1A(4,0),B(-1,0),C(0,2),AC=2,BC=,AB=5,AC2+BC2=AB2,ABC是以ACB为直角的直角三角形,取AB的中点D,D(,0),DA=DC=DB=,CDO=2BAC,tanCDO=tan(2BAC)=,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,PCF=2BAC=PGC+CPG,CPG=BAC,tanCPG=tanBAC=,即,令P(a,-a2+a+2),PR=a,RC=-a2+a,a1=0(舍去),a2=2,xP=2,-a2+a+2=3,P(2,3)情况二,FPC=2BAC,tanFPC=,设FC=4k,PF=3k,PC=5k,tanPGC=,FG=6k,CG=2k,PG=3k,RC=k,RG=k,PR=3k-k=k,a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),综上所述:P点坐标是(2,3)或(,)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏23、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元【解析】试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值试题解析:(1)由题意知,若观光车能全部租出,则0x100,由50x11000,解得x22,又x是5的倍数,每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0x100时,y1=50x1100,y1随x的增大而增大,当x=100时,y1的最大值为50×1001100=3900;当x100时,y2=(50)x1100=x2+70x1100=(x175)2+5025,当x=175时,y2的最大值为5025,50253900,故当每辆车的日租金为175元时,每天的净收入最多是5025元考点:二次函数的应用24、29.8米【解析】作,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度【详解】解:如图,作,由题意得:米,米,则米,答:这架无人飞机的飞行高度为米【点睛】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键25、(1)50(2)420(3)P=【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50482014=4(名);即可补全统计图;(2)由题意可求得130145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50482014=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),答:考试成绩评为“B”的学生大约有448名;(3)画树状图得:共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,所选两名学生刚好是一名女生和一名男生的概率为: =考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频26、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形【解析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到A2B2C2,(3)根据勾股定理逆定理解答即可【详解】(1)如图所示,A1B1C1即为所求;(2)如图所示,A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B=,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形27、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【解析】(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.【详解】(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x3)万元,则,解得x=1经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a套,则乙种套房提升(80a)套,则209025a+1(80a)2096,解得48a2共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套设提升两种套房所需要的费用为y万元,则y=25a+1(80a)=3a+2240,k=3,当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【点睛】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程