山东省德州市陵城区江山实验校2022-2023学年中考数学模拟预测题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1多项式ax24ax12a因式分解正确的是( )Aa(x6)(x+2)Ba(x3)(x+4)Ca(x24x12)Da(x+6)(x2)2如图,在矩形ABCD中,AD=1,AB1,AG平分BAD,分别过点B,C作BEAG 于点E,CFAG于点F,则AEGF的值为( )A1BCD3对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解4如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A点MB点NC点PD点Q5如图,在ABC中,ACB=90°, ABC=60°, BD平分ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A3.5B3C4D4.56若分式有意义,则的取值范围是( )A;B;C;D.7如图,AB是O的直径,点C、D是圆上两点,且AOC126°,则CDB()A54°B64°C27°D37°8下面的几何体中,主(正)视图为三角形的是( )ABCD9如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为( )A(1,4)B(7,4)C(6,4)D(8,3)10如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米ABCD二、填空题(共7小题,每小题3分,满分21分)11分解因式:2m2-8=_12如图,在菱形纸片中,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为_13已知AD、BE是ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_14分解因式:4a3bab_15关于的一元二次方程有两个相等的实数根,则的值等于_16若x=1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_17如图,在OAB中,C是AB的中点,反比例函数y=(k0)在第一象限的图象经过A,C两点,若OAB面积为6,则k的值为_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,C=90°作BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求ABD的面积19(5分)如图,在ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB2,AE2,求BAD的大小20(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将ABC绕点D顺时针旋转90°画出旋转后的图形A1B1C1;在网格中将ABC放大2倍得到DEF,使A与D为对应点21(10分)计算:16+()2|2|+2tan60°22(10分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.若其不变长度为零,求b的值;若1b3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(xm)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0q3,则m的取值范围为 .23(12分)已如:O与O上的一点A(1)求作:O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由24(14分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图和图,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为 ,图中m的值为 ;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可解:ax24ax12a=a(x24x12)=a(x6)(x+2)故答案为a(x6)(x+2)点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键2、D【解析】设AE=x,则AB=x,由矩形的性质得出BAD=D=90°,CD=AB,证明ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.【详解】设AE=x,四边形ABCD是矩形,BAD=D=90°,CD=AB,AG平分BAD,DAG=45°,ADG是等腰直角三角形,DG=AD=1,AG=AD=,同理:BE=AE=x, CD=AB=x,CG=CD-DG=x -1,同理: CG=GF,FG= ,AE-GF=x-(x-)=.故选D.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.3、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解4、C【解析】试题分析:点M,N表示的有理数互为相反数,原点的位置大约在O点,绝对值最小的数的点是P点,故选C考点:有理数大小比较5、B【解析】解:ACB90°,ABC60°,A10°,BD平分ABC,ABDABC10°,AABD,BDAD6,在RtBCD中,P点是BD的中点,CPBD1故选B6、B【解析】分式的分母不为零,即x-21【详解】分式有意义,x-21,.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零7、C【解析】由AOC126°,可求得BOC的度数,然后由圆周角定理,求得CDB的度数【详解】解:AOC126°,BOC180°AOC54°,CDBBOC27°故选:C【点睛】此题考查了圆周角定理注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8、C【解析】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形故选C9、B【解析】如图,经过6次反弹后动点回到出发点(0,3),2018÷6=3362,当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4)故选C10、A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O连接OA根据垂径定理和勾股定理求解得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r4)2,解得r=6.5考点:垂径定理的应用二、填空题(共7小题,每小题3分,满分21分)11、2(m+2)(m-2)【解析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式【详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解12、【解析】过点作,交延长线于,连接,交于,根据折叠的性质可得,根据同角的余角相等可得,可得,由平行线的性质可得,根据的三角函数值可求出、的长,根据为中点即可求出的长,根据余弦的定义的值即可得答案.【详解】过点作,交延长线于,连接,交于,四边形是菱形,将菱形纸片翻折,使点落在的中点处,折痕为,为中点,.故答案为【点睛】本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.13、4【解析】由三角形的重心的概念和性质,由AD、BE为ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.故答案为4.点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍14、ab(2a+1)(2a-1)【解析】先提取公因式再用公式法进行因式分解即可.【详解】4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.15、【解析】分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.详解:由题意得:= , ,即a(a-1)=1, a-1=,故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a0)的根的判别式=b²-4ac:当>0, 方程有两个不相等的实数根;当<0, 方程没有实数根;当=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.16、1【解析】试题分析:将x=1代入方程得:13+m+1=0,解得:m=1考点:一元二次方程的解17、4【解析】分别过点、点作的垂线,垂足分别为点、点,根据是的中点得到为的中位线,然后设,根据,得到,最后根据面积求得,从而求得.【详解】分别过点、点作的垂线,垂足分别为点、点,如图点为的中点,为的中位线,.故答案为:.【点睛】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三、解答题(共7小题,满分69分)18、(1)答案见解析;(2)【解析】(1)根据三角形角平分线的定义,即可得到AD; (2)过D作于DEABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求; (2)如图,过D作DEAB于E, AD平分BAC, DE=CD=4, SABD=AB·DE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.19、 (1)见解析;(2) 60°.【解析】(1)先证明AEBAEF,推出EAB=EAF,由ADBC,推出EAF=AEB=EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G根据菱形的性质得出AB=2,AG=AE=,BAF=2BAE,AEBF然后解直角ABG,求出BAG=30°,那么BAF=2BAE=60°【详解】解:(1)在AEB和AEF中,AEBAEF,EAB=EAF,ADBC,EAF=AEB=EAB,BE=AB=AFAFBE,四边形ABEF是平行四边形,AB=BE,四边形ABEF是菱形;(2)连结BF,交AE于GAB=AF=2,GA=AE=×2=,在RtAGB中,cosBAE=,BAG=30°,BAF=2BAG=60°,【点睛】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.20、(1)见解析(2)见解析【解析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,DEF即为所求【点睛】本题主要考查作图位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质21、1+3【解析】先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果【详解】16+()2|2|+2tan60°=1+4(2)+2,=1+42+2,=1+3【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则22、详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)首先由函数y=1x1bx=x,求得x(1xb1)=2,然后由其不变长度为零,求得答案;由,利用1b3,可求得其不变长度q的取值范围;(3)由记函数y=x11x(xm)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案试题解析:解:(1)函数y=x1,令y=x,则x1=x,无解;函数y=x1没有不变值;y=x-1 =,令y=x,则,解得:x=±1,函数的不变值为±1,q=1(1)=1函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,函数y=x1的不变值为:2或1,q=12=1;(1)函数y=1x1bx,令y=x,则x=1x1bx,整理得:x(1xb1)=2q=2,x=2且1xb1=2,解得:b=1;由知:x(1xb1)=2,x=2或1xb1=2,解得:x1=2,x1=1b3,1x11,12q12,1q1;(3)记函数y=x11x(xm)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,函数G的图象关于x=m对称,G:y= 当x11x=x时,x3=2,x4=3;当(1mx)11(1mx)=x时,=1+8m,当2,即m时,q=x4x3=3;当2,即m时,x5=,x6=当m2时,x3=2,x4=3,x62,x4x63(不符合题意,舍去);当x5=x4时,m=1,当x6=x3时,m=3;当2m1时,x3=2(舍去),x4=3,此时2x5x4,x62,q=x4x63(舍去);当1m3时,x3=2(舍去),x4=3,此时2x5x4,x62,q=x4x63;当m3时,x3=2(舍去),x4=3(舍去),此时x53,x62,q=x5x63(舍去);综上所述:m的取值范围为1m3或m点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性注意掌握分类讨论思想的应用是解答此题的关键23、(1)答案见解析;(2)证明见解析.【解析】(1)如图,在O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,则判断BE为直径,所以BFE=BCE=90°,同理可得FBC=CEF=90°,然后判断四边形BCEF为矩形【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形理由如下:连接BE,如图,六边形ABCDEF为正六边形,AB=BC=CD=DE=EF=FA,BE为直径,BFE=BCE=90°,同理可得FBC=CEF=90°,四边形BCEF为矩形【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了矩形的判定与正六边形的性质24、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标【解析】分析:()根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可; ()根据平均数、众数、中位数的定义求解可得; ()总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得详解:()本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1 故答案为50、1; ()平均数为=5.16次,众数为5次,中位数为=5次; ()×350=2答:估计该校350名九年级男生中有2人体能达标点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据