欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    安徽省淮南市寿县达标名校2023届中考考前最后一卷数学试卷含解析.doc

    • 资源ID:87999504       资源大小:962KB        全文页数:20页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    安徽省淮南市寿县达标名校2023届中考考前最后一卷数学试卷含解析.doc

    2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若分式 有意义,则x的取值范围是Ax1Bx1Cx1Dx02九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是ABCD3若分式有意义,则a的取值范围是()Aa1Ba0Ca1且a0D一切实数4如图,已知ABC中,C=90°,AC=BC=,将ABC绕点A顺时针方向旋转60°到ABC的位置,连接CB,则CB的长为()ABCD15下列计算结果正确的是()ABCD6二次函数的最大值为( )A3B4C5D67如图,在直角坐标系xOy中,若抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域(不包括直线y2和x轴),则l与直线y1交点的个数是()A0个B1个或2个C0个、1个或2个D只有1个8要使分式有意义,则x的取值范围是( )Ax=Bx>Cx<Dx9如图1,在等边ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则ABC的面积为( ) A4BC12D10已知y关于x的函数图象如图所示,则当y0时,自变量x的取值范围是()Ax0B1x1或x2Cx1Dx1或1x211郑州地铁号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()ABCD12据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录用科学记数法表示88000为()A0.88×105 B8.8×104 C8.8×105 D8.8×106二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:(3)0+()1=_14如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_米(结果保留根号)15如图,在RtABC中,C=90°,AC=8,BC=1在边AB上取一点O,使BO=BC,以点O为旋转中心,把ABC逆时针旋转90°,得到ABC(点A、B、C的对应点分别是点A、B、C、),那么ABC与ABC的重叠部分的面积是_16如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG、CF下列结论:ABGAFG;BG=GC;AGCF;SFGC=1其中正确结论的是_17双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则 18我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_m三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知,如图,是的平分线,点在上,垂足分别是、.试说明:.20(6分)如图,抛物线yx2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m当MBABDE时,求点M的坐标;过点M作MNx轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将PMN沿着MN翻折,得QMN,若四边形MPNQ恰好为正方形,直接写出m的值21(6分)如图,O的半径为4,B为O外一点,连结OB,且OB6.过点B作O的切线BD,切点为点D,延长BO交O于点A,过点A作切线BD的垂线,垂足为点C(1)求证:AD平分BAC;(2)求AC的长22(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(2,3)求一次函数和反比例函数解析式若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求ABF的面积根据图象,直接写出不等式的解集23(8分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有_人,在扇形统计图中,“乒乓球”的百分比为_%,如果学校有800名学生,估计全校学生中有_人喜欢篮球项目(2)请将条形统计图补充完整(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率24(10分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向(参考数据:)25(10分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB2m,它的影子BC1.6m,木竿PQ落在地面上的影子PM1.8m,落在墙上的影子MN1.1m,求木竿PQ的长度26(12分)如图,ABC,CDE均是等腰直角三角形,ACB=DCE=90°,点E在AB上,求证:CDACEB27(12分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分式分母不为0,所以,解得.故选:C.2、B【解析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:故选B点睛:本题考查了一元一次方程的应用找准等量关系,列方程是关键3、A【解析】分析:根据分母不为零,可得答案详解:由题意,得,解得 故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键4、C【解析】延长BC交AB于D,根据等边三角形的性质可得BDAB,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、CD,然后根据BC=BD-CD计算即可得解.【详解】解:延长BC交AB于D,连接BB,如图, 在RtACB中,AB=AC=2,BC垂直平分AB,CD=AB=1,BD为等边三角形ABB的高,BD=AB=,BC=BD-CD=-1故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到ABB是等边三角形是解本题的关键.5、C【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,所以原式无意义,错误,故选C【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大6、C【解析】试题分析:先利用配方法得到y=(x1)2+1,然后根据二次函数的最值问题求解解:y=(x1)2+1,a=10,当x=1时,y有最大值,最大值为1故选C考点:二次函数的最值7、C【解析】根据题意,利用分类讨论的数学思想可以得到l与直线y1交点的个数,从而可以解答本题【详解】抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域,开口向下,当顶点D位于直线y1下方时,则l与直线y1交点个数为0,当顶点D位于直线y1上时,则l与直线y1交点个数为1,当顶点D位于直线y1上方时,则l与直线y1交点个数为2,故选C【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答8、D【解析】本题主要考查分式有意义的条件:分母不能为0,即3x70,解得x【详解】3x70,x故选D【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义9、D【解析】分析:由图1、图2结合题意可知,当DPAB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PDAB于点P,连接AD,结合ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DPAB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PDAB于点P,连接AD,ABC是等边三角形,点D是BC边上的中点,ABC=60°,ADBC,DPAB于点P,此时DP=,BD=,BC=2BD=4,AB=4,AD=AB·sinB=4×sin60°=,SABC=AD·BC=.故选D.点睛:“读懂题意,知道当DPAB于点P时,DP最短=”是解答本题的关键.10、B【解析】y<0时,即x轴下方的部分,自变量x的取值范围分两个部分是1<x<1或x>2.故选B.11、C【解析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,恰好选择从同一个口进出的概率为=,故选C【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比12、B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).因此,88000一共5位,88000=8.88×104. 故选B.考点:科学记数法.二、填空题:(本大题共6个小题,每小题4分,共24分)13、-1【解析】先计算0指数幂和负指数幂,再相减.【详解】(3)0+()1,=13,=1,故答案是:1【点睛】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.14、【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可解:如图所示,在RtABC中,tanACB=,BC=,同理:BD=,两次测量的影长相差8米,=8,x=4,故答案为4“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案 15、【解析】先求得OD,AE,DE的值,再利用S四边形ODEF=SAOF-SADE即可.【详解】如图,OA=OA=4,则OD=OA=3,OD=3AD=1,可得DE=,AE =S四边形ODEF=SAOF-SADE=×3×4-××=.故答案为.【点睛】本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.16、【解析】根据翻折变换的性质和正方形的性质可证RtABGRtAFG;在直角ECG中,根据勾股定理可证BG=GC;通过证明AGB=AGF=GFC=GCF,由平行线的判定可得AGCF;由于SFGC=SGCE-SFEC,求得面积比较即可【详解】正确理由:AB=AD=AF,AG=AG,B=AFG=90°,RtABGRtAFG(HL);正确理由:EF=DE=CD=2,设BG=FG=x,则CG=6-x在直角ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1BG=1=6-1=GC;正确理由:CG=BG,BG=GF,CG=GF,FGC是等腰三角形,GFC=GCF又RtABGRtAFG;AGB=AGF,AGB+AGF=2AGB=180°-FGC=GFC+GCF=2GFC=2GCF,AGB=AGF=GFC=GCF,AGCF;错误理由:SGCE=GCCE=×1×4=6GF=1,EF=2,GFC和FCE等高,SGFC:SFCE=1:2,SGFC=×6=1故不正确正确的个数有1个: .故答案为【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度17、【解析】设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,)ACy轴,AEx轴,C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为aB点、D点在上,当y=时,x=;当x=a,y=B点坐标为(,),D点坐标为(a,)AB=a=,AC=a,AD=,AE=AB=AC,AD=AE又BAD=CAD,BADCAD18、1×101【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:10nm用科学记数法可表示为1×10-1m,故答案为1×10-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、见详解【解析】根据角平分线的定义可得ABD=CBD,然后利用“边角边”证明ABD和CBD全等,根据全等三角形对应角相等可得ADB=CDB,然后根据角平分线上的点到角的两边的距离相等证明即可【详解】证明:BD为ABC的平分线,ABD=CBD,在ABD和CBD中, ABDCBD(SAS),ADB=CDB,点P在BD上,PMAD,PNCD,PM=PN【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到ADB=CDB是解题的关键20、(1)(1,4)(2)点M坐标(,)或(,);m的值为 或【解析】(1)利用待定系数法即可解决问题;(2)根据tanMBA=,tanBDE=,由MBA=BDE,构建方程即可解决问题;因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】解:(1)把点B(3,0),C(0,3)代入y=x2+bx+c,得到,解得,抛物线的解析式为y=x2+2x+3,y=x2+2x1+1+3=(x1)2+4,顶点D坐标(1,4);(2)作MGx轴于G,连接BM则MGB=90°,设M(m,m2+2m+3),MG=|m2+2m+3|,BG=3m,tanMBA=,DEx轴,D(1,4),DEB=90°,DE=4,OE=1,B(3,0),BE=2,tanBDE=,MBA=BDE,=,当点M在x轴上方时, =,解得m=或3(舍弃),M(,),当点M在x轴下方时, =,解得m=或m=3(舍弃),点M(,),综上所述,满足条件的点M坐标(,)或(,);如图中,MNx轴,点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|m2+2m+3|=|1m|,当m2+2m+3=1m时,解得m=,当m2+2m+3=m1时,解得m=,满足条件的m的值为或.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题21、(1)证明见解析;(2)AC=【解析】(1)证明:连接ODBD是O的切线,ODBDACBD,ODAC,21OAOD11,12,即AD平分BAC(2)解:ODAC,BODBAC,即解得22、(1)yx+,y;(2)12;(3) x2或0x4.【解析】(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求ABF的面积;(3)直接根据图象可得【详解】(1)一次函数yx+b的图象与反比例函数y (k0)图象交于A(3,2)、B两点,3×(2)+b,k2×36b,k6一次函数解析式y,反比例函数解析式y.(2)根据题意得: ,解得: ,SABF×4×(4+2)12(3)由图象可得:x2或0x4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键23、(1)5,20,80;(2)图见解析;(3).【解析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得;(3)用800乘以喜欢篮球人数所占的比例即可得;(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【详解】(1)调查的总人数为20÷40%=50(人),喜欢篮球项目的同学的人数=50201015=5(人);(2)“乒乓球”的百分比=20%;(3)800×=80,所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=24、(1)173;(2)点C位于点A的南偏东75°方向【解析】试题分析:(1)作辅助线,过点A作ADBC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向试题解析:解:(1)如答图,过点A作ADBC于点D由图得,ABC=75°10°=60°在RtABD中,ABC=60°,AB=100,BD=50,AD=50CD=BCBD=20050=1在RtACD中,由勾股定理得:AC=(km)答:点C与点A的距离约为173km(2)在ABC中,AB2+AC2=1002+(100)2=40000,BC2=2002=40000,AB2+AC2=BC2. BAC=90°.CAF=BACBAF=90°15°=75°答:点C位于点A的南偏东75°方向考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理25、木竿PQ的长度为3.35米【解析】过N点作NDPQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长试题解析:【详解】解:过N点作NDPQ于D,则四边形DPMN为矩形,DNPM1.8m,DPMN1.1m,QD2.25,PQQDDP 2.251.13.35(m)答:木竿PQ的长度为3.35米【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键26、见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可试题解析:证明:ABC、CDE均为等腰直角三角形,ACB=DCE=90°,CE=CD,BC=AC,ACBACE=DCEACE,ECB=DCA,在CDA与CEB中,CDACEB考点:全等三角形的判定;等腰直角三角形27、(1).(2).【解析】试题分析:(1)根据取出黑球的概率=黑球的数量÷球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式试题解析:(1)取出一个黑球的概率(2)取出一个白球的概率与的函数关系式为:考点:概率

    注意事项

    本文(安徽省淮南市寿县达标名校2023届中考考前最后一卷数学试卷含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开