欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    山东省烟台市第二中学2023年高考全国统考预测密卷数学试卷含解析.doc

    • 资源ID:87999640       资源大小:1.84MB        全文页数:17页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    山东省烟台市第二中学2023年高考全国统考预测密卷数学试卷含解析.doc

    2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1等差数列中,则数列前6项和为()A18B24C36D722我国古代数学巨著九章算术中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是( )A2B3C4D13已知函数,其中表示不超过的最大正整数,则下列结论正确的是( )A的值域是B是奇函数C是周期函数D是增函数4如图,在三棱锥中,平面,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( )ABCD5若,则下列结论正确的是( )ABCD6已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )ABCD7已知双曲线C:1(a0,b0)的焦距为8,一条渐近线方程为,则C为( )ABCD8的展开式中的系数为( )A5B10C20D309若是定义域为的奇函数,且,则A的值域为B为周期函数,且6为其一个周期C的图像关于对称D函数的零点有无穷多个10某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是( )A有99%以上的把握认为“学生性别与中学生追星无关”B有99%以上的把握认为“学生性别与中学生追星有关”C在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”11已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为( )A9B7CD12在关于的不等式中,“”是“恒成立”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13设实数,若函数的最大值为,则实数的最大值为_.14的展开式中,的系数是_. (用数字填写答案)15若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为_16设双曲线的左焦点为,过点且倾斜角为45°的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.18(12分)已知等差数列和等比数列满足:(I)求数列和的通项公式;(II)求数列的前项和.19(12分)如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.(1)求的值;(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.20(12分)如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,PCD为正三角形,平面PCD平面ABCD,E为PC的中点 (1)证明:AP平面EBD;(2)证明:BEPC21(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是线段EF的中点求证:(1)AM平面BDE;(2)AM平面BDF.22(10分)已知在中,角,的对边分别为,且.(1)求的值;(2)若,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由等差数列的性质可得,根据等差数列的前项和公式可得结果.【详解】等差数列中,即,故选C.【点睛】本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.2、B【解析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,求的值因为,解得,解得故选B【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.3、C【解析】根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.4、A【解析】根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率【详解】由已知平面,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为故选:A【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数5、D【解析】根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.6、C【解析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.7、A【解析】由题意求得c与的值,结合隐含条件列式求得a2,b2,则答案可求.【详解】由题意,2c8,则c4,又,且a2+b2c2,解得a24,b212.双曲线C的方程为.故选:A.【点睛】本题考查双曲线的简单性质,属于基础题.8、C【解析】由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.9、D【解析】运用函数的奇偶性定义,周期性定义,根据表达式判断即可.【详解】是定义域为的奇函数,则,又,即是以4为周期的函数,所以函数的零点有无穷多个;因为,令,则,即,所以的图象关于对称,由题意无法求出的值域,所以本题答案为D.【点睛】本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.10、B【解析】通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.11、C【解析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,则.因为平面,平面,所以.又,所以平面,则.易知,.在中,即,化简得.在中,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.12、C【解析】讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,由开口向上,则恒成立;当恒成立时,若,则 不恒成立,不符合题意,若 时,要使得恒成立,则 ,即 .所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出 是 的充分条件;若,则推出 是 的必要条件.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据,则当时,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.【详解】因为,又当时,即.当时,显然成立;当时,由等价于,令,当时,单调递增,当时,单调递减,则,又,得,因此的最大值为.故答案为:【点睛】本题主要考查导数在函数中的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.14、【解析】根据组合的知识,结合组合数的公式,可得结果.【详解】由题可知:项来源可以是:(1)取1个,4个(2)取2个,3个的系数为:故答案为:【点睛】本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题.15、【解析】依题意得,再求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解: 正三棱柱的所有棱长均为2,则,点到平面的距离为点到直线的距离所以,所以.故答案为: 【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.16、【解析】设直线的方程为,与联立得到A点坐标,由得,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,由得,从而,即,从而离心率故答案为:【点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)求出,判断函数的单调性,求出函数的最大值,即求的范围;(2)由(1)可知, .对分和两种情况讨论,构造函数,利用放缩法和基本不等式证明结论【详解】(1)由,得.令.当时,;当时,;在上单调递增,在上单调递减,.对任意恒成立,.(2)证明:由(1)可知,在上单调递增,在上单调递减,.若,则,令在上单调递增,.又,在上单调递减,.若,则显然成立.综上,.又以上两式左右两端分别相加,得,即,所以.【点睛】本题考查利用导数解决不等式恒成立问题,利用导数证明不等式,属于难题.18、 (I) ,;(II)【解析】(I)直接利用等差数列,等比数列公式联立方程计算得到答案.(II) ,利用裂项相消法计算得到答案.【详解】(I) ,故,解得,故,.(II),故.【点睛】本题考查了等差数列,等比数列,裂项求和,意在考查学生对于数列公式方法的综合应用.19、(1);(2).【解析】试题分析:(1)联立直线的方程和抛物线的方程,化简写出根与系数关系,由于直线平分,所以,代入点的坐标化简得,结合跟鱼系数关系,可求得;(2)设,由三点共线得,再次代入点的坐标并化简得,同理由三点共线,可得,化简得,故.试题解析:(1)由,整理得,设,则,因为直线平分,所以,即,所以,得,满足,所以.(2)由(1)知抛物线方程为,且,设,由三点共线得,所以,即,整理得:,由三点共线,可得,式两边同乘得:,即:,由得:,代入得:,即:,所以.所以.考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立,相当于得到的坐标,但是设而不求.根据直线平分,有,这样我们根据斜率的计算公式,代入点的坐标,就可以计算出的值.第二问主要利用三点共线来求解.20、(1)见解析(2)见解析【解析】(1)连结AC交BD于点O,连结OE,利用三角形中位线可得APOE,从而可证AP平面EBD;(2)先证明BD平面PCD,再证明PC平面BDE,从而可证BEPC【详解】证明:(1)连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形O为AC中点,又E为PC中点,故APOE,又AP平面EBD,OE平面EBD所以AP平面EBD ;(2)PCD为正三角形,E为PC中点所以PCDE因为平面PCD平面ABCD,平面PCD平面ABCDCD,又BD平面ABCD,BDCDBD平面PCD又PC平面PCD,故PCBD又BDDED,BD平面BDE,DE平面BDE故PC平面BDE又BE平面BDE,所以BEPC【点睛】本题主要考查空间位置关系的证明,线面平行一般转化为线线平行来证明,直线与直线垂直通常利用线面垂直来进行证明,侧重考查逻辑推理的核心素养.21、(1)见解析(2)见解析【解析】(1)建立如图所示的空间直角坐标系,设ACBDN,连结NE.则N,E(0,0,1),A(,0),M.,.且NE与AM不共线NEAM.NE平面BDE,AM平面BDE,AM平面BDE.(2)由(1)知,D(,0,0),F(,1),(0,1),·0,AMDF.同理AMBF.又DFBFF,AM平面BDF.22、 (1);(2) .【解析】分析:(1)在式子中运用正弦、余弦定理后可得(2)由经三角变换可得,然后运用余弦定理可得,从而得到,故得详解:(1)由题意及正、余弦定理得, 整理得,(2)由题意得, ,. 由余弦定理得, ,当且仅当时等号成立 面积的最大值为点睛:(1)正、余弦定理经常与三角形的面积综合在一起考查,解题时要注意整体代换的应用,如余弦定理中常用的变形,这样自然地与三角形的面积公式结合在一起(2)运用基本不等式求最值时,要注意等号成立的条件,在解题中必须要注明

    注意事项

    本文(山东省烟台市第二中学2023年高考全国统考预测密卷数学试卷含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开