山东济南市历下区重点中学2022-2023学年中考数学全真模拟试卷含解析.doc
-
资源ID:87999710
资源大小:983KB
全文页数:26页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东济南市历下区重点中学2022-2023学年中考数学全真模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是抛物线y=ax2+bx+c(a0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:abc0;2a+b=0;方程ax2+bx+c=4有两个相等的实数根;抛物线与x轴的另一个交点是(2.0);x(ax+b)a+b,其中正确结论的个数是()A4个B3个C2个D1个2如图,AB是O的直径,弦CDAB,垂足为E,连接AC,若CAB=22.5°,CD=8cm,则O的半径为()A8cmB4cmC4cmD5cm3已知一元二次方程有一个根为2,则另一根为A2B3C4D84在平面直角坐标系xOy中,若点P(3,4)在O内,则O的半径r的取值范围是( )A0r3Br4C0r5Dr55对于二次函数,下列说法正确的是( )A当x>0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点6下列判断错误的是( )A对角线相等的四边形是矩形B对角线相互垂直平分的四边形是菱形C对角线相互垂直且相等的平行四边形是正方形D对角线相互平分的四边形是平行四边形7青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米将 2500000 用科学记数法表示应为( )ABCD8对于下列调查:对从某国进口的香蕉进行检验检疫;审查某教科书稿;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D9如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D2110如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律则第(6)个图形中面积为1的正方形的个数为( )A20B27C35D4011某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )Ax(x+1)=1035Bx(x-1)=1035Cx(x+1)=1035Dx(x-1)=103512若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m二、填空题:(本大题共6个小题,每小题4分,共24分)13有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则ADE的度数为()A144°B84°C74°D54°14已知,则_15如图,直线交于点,与轴负半轴,轴正半轴分别交于点,的延长线相交于点,则的值是_16如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EMBC交弧BD于点E,则弧BE的长为_17如图,设ABC的两边AC与BC之和为a,M是AB的中点,MCMA5,则a的取值范围是_18在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)现有一次函数ymx+n和二次函数ymx2+nx+1,其中m0,若二次函数ymx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式若一次函数ymx+n经过点(2,0),且图象经过第一、三象限二次函数ymx2+nx+1经过点(a,y1)和(a+1,y2),且y1y2,请求出a的取值范围若二次函数ymx2+nx+1的顶点坐标为A(h,k)(h0),同时二次函数yx2+x+1也经过A点,已知1h1,请求出m的取值范围20(6分)如图,已知直线与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使POB与POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且ABQ为直角三角形,求点Q的坐标21(6分)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的度数,并直接写出结果(用含的式子表示)22(8分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE求证:AECF23(8分)如图,ABCD的对角线AC,BD相交于点OE,F是AC上的两点,并且AE=CF,连接DE,BF(1)求证:DOEBOF;(2)若BD=EF,连接DE,BF判断四边形EBFD的形状,并说明理由24(10分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车已知小张家距上班地点10千米他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍小张用骑公共自行车方式上班平均每小时行驶多少千米?25(10分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率26(12分)如图,已知等边ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DEAC,垂足为E,过点E作EFAB,垂足为F,连接FD(1)求证:DE是O的切线;(2)求EF的长27(12分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF(1)判断AF与O的位置关系并说明理由;(2)若O的半径为4,AF=3,求AC的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】通过图象得到、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.【详解】由图象可知,抛物线开口向下,则,抛物线的顶点坐标是,抛物线对称轴为直线,则错误,正确;方程的解,可以看做直线与抛物线的交点的横坐标,由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,则方程有两个相等的实数根,正确;由抛物线对称性,抛物线与轴的另一个交点是,则错误;不等式可以化为,抛物线顶点为,当时,故正确.故选:.【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.2、C【解析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径【详解】解:连接OC,如图所示:AB是O的直径,弦CDAB, OA=OC,A=OCA=22.5°,COE为AOC的外角,COE=45°,COE为等腰直角三角形, 故选:C【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键3、C【解析】试题分析:利用根与系数的关系来求方程的另一根设方程的另一根为,则+2=6, 解得=1考点:根与系数的关系4、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围【详解】点P的坐标为(3,4),OP1点P(3,4)在O内,OPr,即r1故选D【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系5、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.6、A【解析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大7、C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便解答:解:根据题意:2500000=2.5×1故选C8、B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】对从某国进口的香蕉进行检验检疫适合抽样调查;审查某教科书稿适合全面调查;中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查9、A【解析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45°,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:×AD×BC=×3×(3+4)=故选:A【点睛】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键10、B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,按此规律,第n个图形中面积为1的正方形有2+3+4+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个故选B考点:规律型:图形变化类.11、B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程全班有x名同学,每名同学要送出(x-1)张;又是互送照片,总共送的张数应该是x(x-1)=1故选B考点:由实际问题抽象出一元二次方程12、B【解析】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故答案选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、B【解析】正五边形的内角是ABC=108°,AB=BC,CAB=36°,正六边形的内角是ABE=E=120°,ADE+E+ABE+CAB=360°,ADE=360°120°120°36°=84°,故选B14、3【解析】依据可设a=3k,b=2k,代入化简即可【详解】,可设a=3k,b=2k,=3故答案为3.【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项两端的两项叫做比例的外项,中间的两项叫做比例的内项15、【解析】连接,根据可得,并且根据圆的半径相等可得OAD、OBE都是等腰三角形,由三角形的内角和,可得C=45°,则有是等腰直角三角形,可得 即可求求解【详解】解:如图示,连接,是直径,是等腰直角三角形,【点睛】本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键16、【解析】延长ME交AD于F,由M是BC的中点,MFAD,得到F点为AD的中点,即AF=AD,则AEF=30°,得到BAE=30°,再利用弧长公式计算出弧BE的长【详解】延长ME交AD于F,如图,M是BC的中点,MFAD,F点为AD的中点,即AF=AD又AE=AD,AE=2AF,AEF=30°,BAE=30°,弧BE的长=故答案为【点睛】本题考查了弧长公式:l=也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度17、10a10【解析】根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围【详解】M是AB的中点,MC=MA=5,ABC为直角三角形,AB=10;a=AC+BCAB=10;令AC=x、BC=y,xy=,x、y是一元二次方程z2-az+=0的两个实根,=a2-4×0,即a10综上所述,a的取值范围是10a10故答案为10a10【点睛】本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点18、 【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案【详解】在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.故答案为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)yx2,y=x2+1;(2)a;(3)m2或m1【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n2m,利用m与n的关系能求出二次函数对称轴x1,由一次函数经过一、三象限可得m1,确定二次函数开口向上,此时当 y1y2,只需让a到对称轴的距离比a1到对称轴的距离大即可求a的范围(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h,将得到的三个关系联立即可得到,再由题中已知1h1,利用h的范围求出m的范围【详解】(1)将点(2,1),(3,1),代入一次函数ymx+n中,解得,一次函数的解析式是yx2,再将点(2,1),(3,1),代入二次函数ymx2+nx+1,解得,二次函数的解析式是(2)一次函数ymx+n经过点(2,1),n2m,二次函数ymx2+nx+1的对称轴是x,对称轴为x1,又一次函数ymx+n图象经过第一、三象限,m1,y1y2,1a1+a1,a(3)ymx2+nx+1的顶点坐标为A(h,k),kmh2+nh+1,且h,又二次函数yx2+x+1也经过A点,kh2+h+1,mh2+nh+1h2+h+1,又1h1,m2或m1【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法20、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,1)或(0,1).【解析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在POB和POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:POC=POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A(1,4)代入ykx6,得k2,y2x6,令y0,解得:x1,B的坐标是(1,0)A为顶点,设抛物线的解析为ya(x1)24,把B(1,0)代入得:4a40,解得a1,y(x1)24x22x1 (2)存在OBOC1,OPOP,当POBPOC时,POBPOC,此时PO平分第二象限,即PO的解析式为yx设P(m,m),则mm22m1,解得m(m0,舍),P(,) (1)如图,当Q1AB90°时,DAQ1DOB,即=,DQ1,OQ1,即Q1(0,-);如图,当Q2BA90°时,BOQ2DOB,即,OQ2,即Q2(0,);如图,当AQ1B90°时,作AEy轴于E,则BOQ1Q1EA,即OQ124OQ1+10,OQ11或1,即Q1(0,1),Q4(0,1)综上,Q点坐标为(0,-)或(0,)或(0,1)或(0,1)21、 (1) GF=GD,GFGD;(2)见解析;(3)见解析;(4) 90°.【解析】(1)根据四边形ABCD是正方形可得ABD=ADB=45°,BAD=90°,点D关于直线AE的对称点为点F,即可证明出DBF=90°,故GFGD,再根据F=ADB,即可证明GF=GD;(2)连接AF,证明AFG=ADG,再根据四边形ABCD是正方形,得出AB=AD,BAD=90°,设BAF=n,FAD=90°+n,可得出FGD=360°FADAFGADG=360°(90°+n)(180°n)=90°,故GFGD;(3)连接BD,由(2)知,FG=DG,FGDG,再分别求出GFD与DBC的角度,再根据三角函数的性质可证明出BDFCDG,故DGC=FDG,则CGDF;(4)连接AF,BD,根据题意可证得DAM=90°2=90°1,DAF=2DAM=180°21,再根据菱形的性质可得ADB=ABD=,故AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(180°21)=360°,2DFG+21+21=180°,即可求出DFG【详解】解:(1)GF=GD,GFGD,理由:四边形ABCD是正方形,ABD=ADB=45°,BAD=90°,点D关于直线AE的对称点为点F,BAD=BAF=90°,F=ADB=45°,ABF=ABD=45°,DBF=90°,GFGD,BAD=BAF=90°,点F,A,D在同一条线上,F=ADB,GF=GD,故答案为GF=GD,GFGD;(2)连接AF,点D关于直线AE的对称点为点F,直线AE是线段DF的垂直平分线,AF=AD,GF=GD,1=2,3=FDG,1+3=2+FDG,AFG=ADG,四边形ABCD是正方形,AB=AD,BAD=90°,设BAF=n,FAD=90°+n,AF=AD=AB,FAD=ABF,AFB+ABF=180°n,AFB+ADG=180°n,FGD=360°FADAFGADG=360°(90°+n)(180°n)=90°,GFDG,(3)如图2,连接BD,由(2)知,FG=DG,FGDG,GFD=GDF=(180°FGD)=45°,四边形ABCD是正方形,BC=CD,BCD=90°,BDC=DBC=(180°BCD)=45°,FDG=BDC,FDGBDG=BDCBDG,FDB=GDC,在RtBDC中,sinDFG=sin45°=,在RtBDC中,sinDBC=sin45°=,BDFCDG,FDB=GDC,DGC=DFG=45°,DGC=FDG,CGDF;(4)90°,理由:如图3,连接AF,BD,点D与点F关于AE对称,AE是线段DF的垂直平分线,AD=AF,1=2,AMD=90°,DAM=FAM,DAM=90°2=90°1,DAF=2DAM=180°21,四边形ABCD是菱形,AB=AD,AFB=ABF=DFG+1,BD是菱形的对角线,ADB=ABD=,在四边形ADBF中,AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(180°21)=360°2DFG+21+21=180°,DFG=90°【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.22、证明见解析【解析】试题分析:通过全等三角形ADECBF的对应角相等证得AED=CFB,则由平行线的判定证得结论证明:平行四边形ABCD中,AD=BC,ADBC,ADE=CBF在ADE与CBF中,AD=BC,ADE=CBF, DE=BF,ADECBF(SAS)AED=CFBAECF23、(2)证明见解析;(2)四边形EBFD是矩形理由见解析.【解析】分析:(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,AE=CF,OE=OF,在DEO和BOF中,DOEBOF(2)结论:四边形EBFD是矩形理由:OD=OB,OE=OF,四边形EBFD是平行四边形,BD=EF,四边形EBFD是矩形点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型24、15千米【解析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4×解得:x=15,经检验x=15是原方程的解且符合实际意义答:小张用骑公共自行车方式上班平均每小时行驶15千米25、 (1)200;(2)72°,作图见解析;(3).【解析】(1)用一等奖的人数除以所占的百分比求出总人数; (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.【详解】解:(1)这次知识竞赛共有学生=200(名);(2)二等奖的人数是:200×(110%24%46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×=72°;(3)小华获得“一等奖或二等奖”的概率是: =【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.26、 (1)见解析;(2) .【解析】(1)连接OD,根据切线的判定方法即可求出答案;(2)由于ODAC,点O是AB的中点,从而可知OD为ABC的中位线,在RtCDE中,C60°,CECD1,所以AEACCE413,在RtAEF中,所以EFAEsinA3×sin60°.【详解】(1)连接OD,ABC是等边三角形,C=A=B=60°,OD=OB,ODB是等边三角形,ODB=60°ODB=C,ODAC,DEACODDE,DE是O的切线(2)ODAC,点O是AB的中点,OD为ABC的中位线,BD=CD=2在RtCDE中,C=60°,CDE=30°,CE=CD=1AE=ACCE=41=3在RtAEF中,A=60°,EF=AEsinA=3×sin60°=【点睛】本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型27、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90°OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90°AF为圆O的切线,即AF与O的位置关系是相切(2)AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90°,证出OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90°,OFBC,AEO=90°,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90°,OAF=90°,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90°,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,3×4=1×AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质