四川省成都市双流区双流中学2022-2023学年高三3月份模拟考试数学试题含解析.doc
-
资源ID:87999716
资源大小:1.87MB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省成都市双流区双流中学2022-2023学年高三3月份模拟考试数学试题含解析.doc
2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )ABCD2函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 3下列不等式正确的是( )ABCD4已知三棱柱( )ABCD5过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )ABCD6某三棱锥的三视图如图所示,则该三棱锥的体积为ABC2D7如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD8过点的直线与曲线交于两点,若,则直线的斜率为( )ABC或D或9在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( )ABCD10已知数列是公差为的等差数列,且成等比数列,则( )A4B3C2D111数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:曲线有四条对称轴;曲线上的点到原点的最大距离为;曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;四叶草面积小于.其中,所有正确结论的序号是( )ABCD12在复平面内,复数对应的点的坐标为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13平面向量与的夹角为,则_14函数在区间上的值域为_.15如图,在三棱锥ABCD中,点E在BD上,EAEBECED,BDCD,ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_.16设函数在区间上的值域是,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)求的最小值;(2)若对任意,都有,求实数的取值范围.18(12分)设函数,.(1)解不等式;(2)若对任意的实数恒成立,求的取值范围.19(12分)自湖北武汉爆发新型冠状病毒肺炎疫情以来,在以总书记为核心的党中央的正确领导和指挥下,全国各地纷纷驰援,湖北的疫情形势很快得到了控制,但是国际疫情越来越严重,医用口罩等物资存在很大缺口.某口罩生产厂家复工复产后,抢时生产口罩,以驰援国际社会,已知该企业前10天生产的口罩量如下表所示:第天12345678910产量y(单位:万个)76.088.096.0104.0111.0117.0124.0130.0135.0140.0对上表的数据作初步处理,得到一些统计量的值:mn82.53998.9570.5(1)求表中m,n的值,并根据最小二乘法求出y关于x的线性回归方程(回归方程系数精确到0.1);(2)某同学认为更适宜作为y关于x的回归方程模型,并以此模型求得回归方程为.经调查,该企业第11天的产量为145.3万个,与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?并说明理由.附:,;20(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;()为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;()在满足()的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.21(12分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.求数列的通项公式;求证:.22(10分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为直径的圆上,且,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】可设,根据在上为偶函数及便可得到:,可设,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,;若,且,则:;在上是减函数;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.2、D【解析】由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果3、D【解析】根据,利用排除法,即可求解【详解】由,可排除A、B、C选项,又由,所以故选D【点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题4、C【解析】因为直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则OD底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R13,即R5、D【解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.6、A【解析】 由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为 高为的三棱锥,所以三棱锥的体积为,故选A7、C【解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.8、A【解析】利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.9、A【解析】由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.10、A【解析】根据等差数列和等比数列公式直接计算得到答案.【详解】由成等比数列得,即,已知,解得.故选:.【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.11、C【解析】利用之间的代换判断出对称轴的条数;利用基本不等式求解出到原点的距离最大值;将面积转化为的关系式,然后根据基本不等式求解出最大值;根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】:当变为时, 不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;:由可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.12、C【解析】利用复数的运算法则、几何意义即可得出【详解】解:复数i(2+i)2i1对应的点的坐标为(1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由平面向量模的计算公式,直接计算即可.【详解】因为平面向量与的夹角为,所以,所以;故答案为【点睛】本题主要考查平面向量模的计算,只需先求出向量的数量积,进而即可求出结果,属于基础题型.14、【解析】由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域【详解】,则,.故答案为:【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论15、32【解析】设EDa,根据勾股定理的逆定理可以通过计算可以证明出CEED. AMx,根据三棱锥的体积公式,运用基本不等式,可以求出AM的长度,最后根据球的表面积公式进行求解即可.【详解】设EDa,则CDa.可得CE2+DE2CD2,CEED.当平面ABD平面BCD时,当四面体CEMN的体积才有可能取得最大值,设AMx.则四面体CEMN的体积(ax)a×xax(ax),当且仅当x时取等号.解得a2.此时三棱锥ABCD的外接球的表面积4a232.故答案为:32【点睛】本题考查了基本不等式的应用,考查了球的表面积公式,考查了数学运算能力和空间想象能力.16、.【解析】配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.【详解】,顶点为因为函数的值域是,令,可得或.又因为函数图象的对称轴为,且,所以的取值范围为.故答案为:.【点睛】本题考查函数值域,考查数形结合思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2;(2).【解析】(1)化简得,所以,展开后利用基本不等式求最小值即可;(2)由(1),原不等式可转化为,讨论去绝对值即可求得的取值范围.【详解】(1),.当且仅当且即时,.(2)由(1)知,对任意,都有,即.当时,有,解得;当,时,有,解得;当时,有,解得;综上,实数的取值范围是.【点睛】本题主要考查基本不等式的运用和求解含绝对值的不等式,考查学生的分类思想和计算能力,属于中档题.18、 (1);(2)【解析】试题分析:(1)将绝对值不等式两边平方,化为二次不等式求解(2)将问题化为分段函数问题,通过分类讨论并根据恒成立问题的解法求解即可试题解析: 整理得解得 解得 ,且无限趋近于4,综上的取值范围是19、(1),;(2)二次函数模型的回归方程来拟合效果会更好,理由见解析.【解析】(1)计算平均数,即可容易求得;结合参考数据,即可求得回归直线方程;(2)利用两个模型分别预测第11天的产量,和实际值进行比较,即可判断.【详解】(1), 由最小二乘法公式求得 即所求回归方程为. (2)由(1)可知,用线性回归方程模型求得该企业第11天的产量为(万个) 用题中的二次函数模型求得的结果为(万个)与第11天的实际数据进行比较发现 所以用这个二次函数模型的回归方程来拟合效果会更好.【点睛】本题考查平均数的求解,回归直线方程的求解,以及考查拟合模型的选择,属综合基础题.20、(1);(2),;(3)见解析.【解析】试题分析: (1)根据题意分段表示出函数解析式;(2)将代入(1)中函数解析式可得,即,根据频率分布直方图可分别得到关于的方程,即可得;(3)取每段中点值作为代表的用电量,分别算出对应的费用值,对应得出每组电费的概率,即可得到的概率分布列,然后求出的期望.试题解析:(1)当时,;当当时,;当当时,所以与之间的函数解析式为.(2)由(1)可知,当时,则,结合频率分布直方图可知,(3)由题意可知可取50,150,250,350,450,550,当时,当时,当时,当时,当时,当时,故的概率分布列为25751402203104100.10.20.30.20.150.05所以随机变量的数学期望21、(1);(2);详见解析.【解析】(1)依题意可表示,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根; (2)由题意可表示,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;由已知关系,表示并相减即可表示递推关系,显然当时,成立,当,时,表示,由分组求和与正项数列性质放缩不等式得证.【详解】解:(1)依题意可得,两式相减,得,所以,因为,所以,且,解得.(2)因为,所以,两式相减,得,即.因为,所以,即.而当时,可得,故,所以对任意的正整数都成立,所以数列是等差数列,公差为1,首项为1,所以数列的通项公式为.因为,所以,两式相减,得,即,所以对任意的正整数,都有.令,而当时,显然成立,所以当,时,所以,即,所以,得证.【点睛】本题考查由前n项和关系求等比数列公比,求等差数列通项公式,还考查了由分组求和表示数列和并由正项数列放缩证明不等式,属于难题.22、(1);(2).【解析】(1)由椭圆的离心率求出、的值,由此可求得椭圆的方程;(2)设点、,联立直线与椭圆的方程,列出韦达定理,由题意得出,可得出,【详解】(1)由题意得,.又因为,所以椭圆的方程为;(2)由,得.设、,所以,依题意,易知,四边形为平行四边形,所以.因为,所以.即,将其整理为.因为,所以,.所以,即.【点睛】本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,考查计算能力,属于中等题.