安徽省马鞍山市重点中学2022-2023学年中考押题数学预测卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是( )A点AB点BC点CD点D2下列事件中,属于不确定事件的是( )A科学实验,前100次实验都失败了,第101次实验会成功B投掷一枚骰子,朝上面出现的点数是7点C太阳从西边升起来了D用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形3五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A2、40 B42、38 C40、42 D42、404如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )ABCD5某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A2x%B1+2x%C(1+x%)x%D(2+x%)x%6方程x23x0的根是( )Ax0Bx3C,D,7已知:如图是yax2+2x1的图象,那么ax2+2x10的根可能是下列哪幅图中抛物线与直线的交点横坐标()ABCD8如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D9满足不等式组的整数解是()A2B1C0D110如图,小明将一张长为20cm,宽为15cm的长方形纸(AEDE)剪去了一角,量得AB3cm,CD4cm,则剪去的直角三角形的斜边长为()A5cmB12cmC16cmD20cm二、填空题(共7小题,每小题3分,满分21分)11已知,直接y=kx+b(k0,b0)与x轴、y轴交A、B两点,与双曲线y=(x0)交于第一象限点C,若BC=2AB,则SAOB=_.12化简:_13如果正比例函数的图像经过第一、三象限,那么的取值范围是 _14计算:2(ab)3b_15某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_元.16如图,点M是反比例函数(x0)图像上任意一点,MNy轴于N,点P是x轴上的动点,则MNP的面积为A1B2C4D不能确定17规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点三、解答题(共7小题,满分69分)18(10分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:仅用无刻度直尺,保留必要的画图痕迹在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线19(5分)先化简,再求值:,其中x120(8分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,)(1)求抛物线的表达式(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动设S=PQ2(cm2)试求出S与运动时间t之间的函数关系式,并写出t的取值范围;当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标21(10分)如图,在ABC中,CDAB于点D,tanA2cosBCD,(1)求证:BC2AD;(2)若cosB,AB10,求CD的长.22(10分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)23(12分)如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,求证:AB2=BDBC24(14分)如图,O的直径DF与弦AB交于点E,C为O外一点,CBAB,G是直线CD上一点,ADGABD求证:ADCEDEDF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列、中选取一个补充或更换已知条件,完成你的证明CDBCEB;ADEC;DECADF,且CDE90°参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】, ,因为0.2680.7321.268,所以 表示的点与点B最接近,故选B.2、A【解析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件3、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.4、C【解析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:故选:C【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键5、D【解析】设第一季度的原产值为a,则第二季度的产值为 ,第三季度的产值为 ,则则第三季度的产值比第一季度的产值增长了故选D.6、D【解析】先将方程左边提公因式x,解方程即可得答案【详解】x23x0,x(x3)0,x10,x23,故选:D【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键7、C【解析】由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;C、抛物线y=ax2与直线y=2x+1的交点,即交点的横坐标为方程ax2+2x1=0的根,C符合题意此题得解【详解】抛物线y=ax2+2x1与x轴的交点位于y轴的两端,A、D选项不符合题意;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B选项不符合题意;C、图中交点的横坐标为方程ax2+2x1=0的根(抛物线y=ax2与直线y=2x+1的交点),C选项符合题意故选:C【点睛】本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键8、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45°,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45°,AMH为等腰直角三角形,AH=MH=AM=×2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质9、C【解析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可【详解】 解不等式得:x0.5,解不等式得:x-1,不等式组的解集为-1x0.5,不等式组的整数解为0,故选C【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键10、D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1则剪去的直角三角形的斜边长为1cm故选D【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到AOB的面积即可.【详解】直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)OA=0.5c,OB=,SAOB=【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.12、【解析】直接利用二次根式的性质化简求出答案【详解】,故答案为.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键13、k>1【解析】根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可【详解】因为正比例函数y=(k-1)x的图象经过第一、三象限,所以k-10,解得:k1,故答案为:k1【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答14、2a+b【解析】先去括号,再合并同类项即可得出答案【详解】原式=2a-2b+3b=2a+b故答案为:2a+b15、28【解析】设这种电子产品的标价为x元,由题意得:0.9x21=21×20%,解得:x=28,所以这种电子产品的标价为28元故答案为28.16、A【解析】可以设出M的坐标,的面积即可利用M的坐标表示,据此即可求解【详解】设M的坐标是(m,n),则mn=2.则MN=m,的MN边上的高等于n.则的面积 故选A.【点睛】考查反比例函数系数k的几何意义,是常考点,需要学生熟练掌握.17、【解析】试题解析:当x=1.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x+(x)+x)=1.1+(1.1)+1.1)=(3)+(1)+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=4×1+3×1+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组三、解答题(共7小题,满分69分)18、(1)答案见解析;(2)答案见解析【解析】试题分析:(1)根据等腰直角三角形的性质即可解决问题(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题试题解析:(1)如图所示,ABC=45°(AB、AC是小长方形的对角线)(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线考点:作图应用与设计作图19、解:原式=,【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简然后代x的值,进行二次根式化简解:原式=当x1时,原式.20、(1)抛物线的解析式为:;(2)S与运动时间t之间的函数关系式是S=5t28t+4,t的取值范围是0t1;存在.R点的坐标是(3,);(3)M的坐标为(1,)【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)由勾股定理即可求出;假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标试题解析:(1)设抛物线的解析式是y=ax2+bx+c,正方形的边长2,B的坐标(2,2)A点的坐标是(0,2),把A(0,2),B(2,2),D(4,)代入得:,解得a=,b=,c=2,抛物线的解析式为:,答:抛物线的解析式为:;(2)由图象知:PB=22t,BQ=t,S=PQ2=PB2+BQ2,=(22t)2+t2,即S=5t28t+4(0t1)答:S与运动时间t之间的函数关系式是S=5t28t+4,t的取值范围是0t1;假设存在点R,可构成以P、B、R、Q为顶点的平行四边形S=5t28t+4(0t1),当S=时,5t28t+4=,得20t232t+11=0,解得t=,t=(不合题意,舍去),此时点P的坐标为(1,2),Q点的坐标为(2,),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQPB,则R的横坐标为3,R的纵坐标为,即R(3,),代入,左右两边相等,这时存在R(3,)满足题意;(ii)假设R在QB的左边时,这时PR=QB,PRQB,则R(1,)代入,左右不相等,R不在抛物线上(1分)综上所述,存点一点R(3,)满足题意答:存在,R点的坐标是(3,);(3)如图,MB=MA,A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,理由是:MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,|MB|MD|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=,b=,y=x,抛物线的对称轴是x=1,把x=1代入得:y=M的坐标为(1,);答:M的坐标为(1,)考点:二次函数综合题21、(1)证明见解析;(2)CD2.【解析】(1)根据三角函数的概念可知tanA,cosBCD,根据tanA2cosBCD即可得结论;(2)由B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可【详解】(1)tanA,cosBCD,tanA2cosBCD,2·,BC2AD.(2)cosB,BC2AD,.AB10,AD×104,BD1046,BC8,CD2.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.22、答案见解析【解析】根据轴对称的性质作出线段AC的垂直平分线即可得【详解】如图所示,直线EF即为所求【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图23、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,交CB、CA于E、F;以A为圆心,CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质24、 (1)见解析;(2)见解析.【解析】连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是O的切线,若证ADCEDEDF,只要征得ADFDEC即可在第一问中只能证得EDCDAF90°,所以在第二问中只要证得DECADF即可解答此题【详解】(1)连接AF,DF是O的直径,DAF90°,F+ADF90°,FABD,ADGABD,FADG,ADF+ADG90°直线CD是O的切线EDC90°,EDCDAF90°;(2)选取完成证明直线CD是O的切线,CDBACDBCEB,ACEBADECDECADFEDCDAF90°,ADFDECAD:DEDF:ECADCEDEDF【点睛】此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出还要注意构造直径所对的圆周角是圆中的常见辅助线