山东省东营市东营区胜利一中学2023届中考冲刺卷数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )A圆锥B圆柱C球D正方体2下列图形中,阴影部分面积最大的是ABCD3商场将某种商品按原价的8折出售,仍可获利20元已知这种商品的进价为140元,那么这种商品的原价是()A160元 B180元 C200元 D220元4一个半径为24的扇形的弧长等于20,则这个扇形的圆心角是()A120°B135°C150°D165°5我国古代数学名著孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()ABCD6要使分式有意义,则x的取值范围是( )Ax=Bx>Cx<Dx7若0m2,则关于x的一元二次方程(x+m)(x+3m)3mx+37根的情况是()A无实数根B有两个正根C有两个根,且都大于3mD有两个根,其中一根大于m8若x是2的相反数,|y|=3,则的值是()A2B4C2或4D2或49如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )ABCD10根据总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )A0.6×1010B0.6×1011C6×1010D6×101111民族图案是数学文化中的一块瑰宝下列图案中,既不是中心对称图形也不是轴对称图形的是( )ABCD12如图,AB为O的直径,C、D为O上的点,若ACCDDB,则cosCAD ( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若x=1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_14将2.05×103用小数表示为_15如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=_.16如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E(1)AB的长等于_;(2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_17我们知道方程组的解是,现给出另一个方程组,它的解是_18如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_m三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在ABC中,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图,连接AD,若,求B的大小;如图,若点F为的中点,的半径为2,求AB的长 20(6分)如图,在ABC中,ABAC4,A36°在AC边上确定点D,使得ABD与BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)21(6分)有四张正面分别标有数字1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀随机抽取一张卡片,求抽到数字“1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率22(8分)已知,抛物线y=x2+bx+c经过点A(1,0)和C(0,3)(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当MAC是以AC为直角边的直角三角形时,求点M的坐标23(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°0.9,tan64°2)24(10分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?25(10分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点点B,C的坐标分别为_,_;是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;连接PB,若E为PB的中点,连接OE,则OE的最大值_26(12分)解不等式组27(12分)如图,在中,,以边为直径作交边于点,过点作于点,、的延长线交于点.求证:是的切线;若,且,求的半径与线段的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图主视图,明确主视图是从物体正面看得到的图形是关键.2、C【解析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1B、根据反比例函数系数k的几何意义,阴影部分面积和为:C、如图,过点M作MAx轴于点A,过点N作NBx轴于点B,根据反比例函数系数k的几何意义,SOAM=SOAM=,从而阴影部分面积和为梯形MABN的面积:D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:综上所述,阴影部分面积最大的是C故选C3、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1所以该商品的原价为1元;故选:C【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键4、C【解析】这个扇形的圆心角的度数为n°,根据弧长公式得到20=,然后解方程即可【详解】解:设这个扇形的圆心角的度数为n°,根据题意得20=,解得n=150,即这个扇形的圆心角为150°故选C【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径)5、C【解析】设大马有x匹,小马有y匹,根据题意可得等量关系:大马数小马数100;大马拉瓦数小马拉瓦数100,根据等量关系列出方程组即可【详解】解:设大马有x匹,小马有y匹,由题意得:,故选C【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组6、D【解析】本题主要考查分式有意义的条件:分母不能为0,即3x70,解得x【详解】3x70,x故选D【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义7、A【解析】先整理为一般形式,用含m的式子表示出根的判别式,再结合已知条件判断的取值范围即可.【详解】方程整理为,方程没有实数根,故选A【点睛】本题考查了一元二次方程根的判别式,当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根8、D【解析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案【详解】解:x是1的相反数,|y|=3,x=-1,y=±3,y-x=4或-1故选D【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键9、C【解析】试题解析:左视图如图所示:故选C.10、C【解析】解:将60000000000用科学记数法表示为:6×1故选C【点睛】本题考查科学记数法表示较大的数,掌握科学计数法的一般形式是解题关键11、C【解析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误故选C12、D【解析】根据圆心角,弧,弦的关系定理可以得出=,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值【详解】解:=,故选D【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题分析:将x=1代入方程得:13+m+1=0,解得:m=1考点:一元二次方程的解14、0.1【解析】试题解析:原式=2.05×10-3=0.1【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n0时,n是几,小数点就向右移几位;n0时,n是几,小数点就向左移几位15、1【解析】首先连接BE,由题意易得BF=CF,ACOBKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在RtOBF中,即可求得tanBOF的值,继而求得答案【详解】如图,连接BE,四边形BCEK是正方形,KF=CF=CK,BF=BE,CK=BE,BECK,BF=CF,根据题意得:ACBK,ACOBKO,KO:CO=BK:AC=1:3,KO:KF=1:1,KO=OF=CF=BF,在RtPBF中,tanBOF=1,AOD=BOF,tanAOD=1故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用16、 见图形 【解析】分析:()利用勾股定理计算即可; ()连接AC、BD易知:ACBD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DGCH,所以FD:FC=DG:CH=5:8,可得DF=EF取格点I、J,连接IJ交BD于K,因为BIDJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:()AB的长=;()由题意:连接AC、BD易知:ACBD,可得:EC:ED=AC:BD=3:1取格点G、H,连接GH交DE于F DGCH,FD:FC=DG:CH=5:8,可得DF=EF 取格点I、J,连接IJ交BD于K BIDJ,BK:DK=BI:DJ=5:2连接EK交BF于P,可证BP:PF=5:3 故答案为();()由题意:连接AC、BD 易知:ACBD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F因为DGCH,所以FD:FC=DG:CH=5:8,可得DF=EF 取格点I、J,连接IJ交BD于K因为BIDJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3点睛:本题考查了作图应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型17、【解析】观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.18、【解析】分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可详解:如图1,连接AO,AB=AC,点O是BC的中点,AOBC,又 弧BC的长为:(m),将剪下的扇形围成的圆锥的半径是:(m),圆锥的高是: 故答案为.点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)B=40°;(2)AB= 6.【解析】(1)连接OD,由在ABC中, C=90°,BC是切线,易得ACOD ,即可求得CAD=ADO ,继而求得答案; (2)首先连接OF,OD,由ACOD得OFA=FOD ,由点F为弧AD的中点,易得AOF是等边三角形,继而求得答案.【详解】解:(1)如解图,连接OD,BC切O于点D,ODB=90°,C=90°,ACOD,CAD=ADO,OA=OD,DAO=ADO=CAD=25°,DOB=CAO=CADDAO=50°,ODB=90°,B=90°DOB=90°50°=40°(2)如解图,连接OF,OD,ACOD,OFA=FOD,点F为弧AD的中点,AOF=FOD,OFA=AOF,AF=OA,OA=OF,AOF为等边三角形,FAO=60°,则DOB=60°,B=30°,在RtODB中,OD=2,OB=4,AB=AOOB=24=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明AOF为等边三角形是解(2)的关键.20、【解析】作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长【详解】如图所示,作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,ACBD36°,CC,ABCBDC,设BCBDADx,则CD4x,BC2AC×CD,x24×(4x),解得x1,x2(舍去),BC的长【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作21、(1);(2)【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解解:(1)随机抽取一张卡片有4种等可能结果,其中抽到数字“1”的只有1种,抽到数字“1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,第一次抽到数字“2”且第二次抽到数字“0”的概率为22、(1)y=x2+2x+1;(2)当MAC是直角三角形时,点M的坐标为(1,)或(1,)【解析】(1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;(2)设点M的坐标为(1,m),则CM=,AC=,AM=,分ACM=90°和CAM=90°两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标【详解】(1)将A(1,0)、C(0,1)代入y=x2+bx+c中,得:,解得:,抛物线的解析式为y=x2+2x+1(2)y=x2+2x+1=(x1)2+4,设点M的坐标为(1,m),则CM=,AC=,AM=分两种情况考虑:当ACM=90°时,有AM2=AC2+CM2,即4+m2=10+1+(m1)2,解得:m=,点M的坐标为(1,);当CAM=90°时,有CM2=AM2+AC2,即1+(m1)2=4+m2+10,解得:m=,点M的坐标为(1,)综上所述:当MAC是直角三角形时,点M的坐标为(1,)或(1,)【点睛】本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点23、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度试题解析:(1)在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,设DE=5x米,则EC=12x米,(5x)2+(12x)2=132,解得:x=1,5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知BDH=45°,BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,tan64°=,2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米24、1千米/时【解析】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.【详解】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20x)千米/时,根据题意得:6(20x)=1(20+x),解得:x=1答:水流的速度是1千米/时【点睛】本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.25、(1)B(1,0),C(0,4);(2)点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)【解析】试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)当PB与相切时,PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2Ex轴于E,P2Fy轴于F,根据相似三角形的性质得到 =2,设OC=P2E=2x,CP2=OE=x,得到BE=1x,CF=2x4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2),当BCPC时,PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大试题解析:(1)在中,令y=0,则x=±1,令x=0,则y=4,B(1,0),C(0,4);故答案为1,0;0,4;(2)存在点P,使得PBC为直角三角形,分两种情况:当PB与相切时,PBC为直角三角形,如图(2)a,连接BC,OB=1OC=4,BC=5,CP2BP2,CP2=,BP2=,过P2作P2Ex轴于E,P2Fy轴于F,则CP2FBP2E,四边形OCP2B是矩形,=2,设OC=P2E=2x,CP2=OE=x,BE=1x,CF=2x4, =2,x=,2x=,FP2=,EP2=,P2(,),过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2);当BCPC时,PBC为直角三角形,过P4作P4Hy轴于H,则BOCCHP4, =,CH=,P4H=,P4(,4);同理P1(,4);综上所述:点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)如图(1),连接AP,OB=OA,BE=EP,OE=AP,当AP最大时,OE的值最大,当P在AC的延长线上时,AP的值最大,最大值=,OE的最大值为故答案为26、1x1【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可【详解】解不等式2x+11,得:x1,解不等式x+14(x2),得:x1,则不等式组的解集为1x1【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键27、(1)证明参见解析;(2)半径长为,=.【解析】(1)已知点D在圆上,要连半径证垂直,连结,则,所以,.,.由得出,于是得出结论;(2)由得到,设,则.,由,解得值,进而求出圆的半径及AE长.【详解】解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,.,.,.,.是的切线;(2)在和中,. 设,则.,.,.,解得=,则3x=,AE=6×-=6,的半径长为,=.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.