山东省泰安市2022-2023学年中考数学押题卷含解析.doc
-
资源ID:87999936
资源大小:849KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省泰安市2022-2023学年中考数学押题卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1从 ,0, ,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD2下列事件中,必然事件是()A若ab=0,则a=0 B若|a|=4,则a=±4C一个多边形的内角和为1000°D若两直线被第三条直线所截,则同位角相等3如图,在ABC中,点D,E分别在边AB,AC上,且,则的值为A B C D4九章算术中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10记作+10,则3表示气温为()A零上3B零下3C零上7D零下75如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:AB=4;b2-4ac0;ab0;a2-ab+ac0,其中正确的结论有()个A3B4C2D16如图,O的半径OA=6,以A为圆心,OA为半径的弧交O于B、C点,则BC=()A6B6C3D37如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PMCD,PNBC,则线段MN的长度的最小值为( )ABCD18二次函数的对称轴是 A直线B直线Cy轴Dx轴9下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图中有5个棋子,图中有10个棋子,图中有16个棋子,则图_中有个棋子( )A31B35C40D5010如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()ABCD11若矩形的长和宽是方程x27x+12=0的两根,则矩形的对角线长度为( )A5B7C8D1012抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x21012y04664从上表可知,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在对称轴左侧部分是上升的二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,四边形ACDF是正方形,和都是直角,且点三点共线,则阴影部分的面积是_14阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQl于点Q”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧(2)在直线l上任取点B,以B为圆心,BP长为半径画弧(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求老师表扬了小艾的作法是对的请回答:小艾这样作图的依据是_15分解因式2x24x2_16如图,在ABC中,ABAC,D、E、F分别为AB、BC、AC的中点,则下列结论:ADFFEC;四边形ADEF为菱形;其中正确的结论是_.(填写所有正确结论的序号)17如图,在ABC中,DEBC,若AD1,DB2,则的值为_18正八边形的中心角为_度三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,RtABC中,C=90°,AB=14,AC=7,D是BC上一点,BD=8,DEAB,垂足为E,求线段DE的长20(6分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由 21(6分)如图,在中,的垂直平分线交于,交于,射线上,并且()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论22(8分)如图,在平面直角坐标系xOy中,正比例函数yx的图象与一次函数ykxk的图象的交点坐标为A(m,2)(1)求m的值和一次函数的解析式;(2)设一次函数ykxk的图象与y轴交于点B,求AOB的面积;(3)直接写出使函数ykxk的值大于函数yx的值的自变量x的取值范围23(8分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?24(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°,cos53°,tan53°)25(10分)如图,四边形ABCD,ADBC,DCBC于C点,AEBD于E,且DBDA求证:AECD26(12分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量如图,测得DAC=45°,DBC=65°若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°0.91,cos65°0.42,tan65°2.14)27(12分)计算:21+|+2cos30°参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据有理数的定义可找出在从,0,6这5个数中只有0、6为有理数,再根据概率公式即可求出抽到有理数的概率【详解】在,0,6这5个数中有理数只有0、6这3个数,抽到有理数的概率是,故选C【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键2、B【解析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案【详解】解:A、若ab=0,则a=0,是随机事件,故此选项错误;B、若|a|=4,则a=±4,是必然事件,故此选项正确;C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键3、C【解析】,A=A,ABCAED。故选C。4、B【解析】试题分析:由题意知,“-”代表零下,因此-3表示气温为零下3.故选B.考点:负数的意义5、A【解析】利用抛物线的对称性可确定A点坐标为(-3,0),则可对进行判断;利用判别式的意义和抛物线与x轴有2个交点可对进行判断;由抛物线开口向下得到a0,再利用对称轴方程得到b=2a0,则可对进行判断;利用x=-1时,y0,即a-b+c0和a0可对进行判断【详解】抛物线的对称轴为直线x=-1,点B的坐标为(1,0),A(-3,0),AB=1-(-3)=4,所以正确;抛物线与x轴有2个交点,=b2-4ac0,所以正确;抛物线开口向下,a0,抛物线的对称轴为直线x=-=-1,b=2a0,ab0,所以错误;x=-1时,y0,a-b+c0,而a0,a(a-b+c)0,所以正确故选A【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a0),=b2-4ac决定抛物线与x轴的交点个数:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点也考查了二次函数的性质6、A【解析】试题分析:根据垂径定理先求BC一半的长,再求BC的长解:如图所示,设OA与BC相交于D点. AB=OA=OB=6,OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD= 所以BC=2BD=.故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出OAB是等边三角形,为后继求解打好基础.7、B【解析】分析:由于点P在运动中保持APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可详解: 由于点P在运动中保持APD=90°, 点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在RtQDC中,QC=, CP=QCQP=,故选B点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型解决这个问题的关键是根据圆的知识得出点P的运动轨迹8、C【解析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案【详解】解:二次函数y=x2的对称轴为y轴故选:C 【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k)9、C【解析】根据题意得出第n个图形中棋子数为1+2+3+n+1+2n,据此可得【详解】解:图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况10、D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1故选D【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键11、A【解析】解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长=1故选A12、C【解析】当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、8【解析】【分析】证明AECFBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】四边形ACDF是正方形,AC=FA,CAF=90°,CAE+FAB=90°,CEA=90°,CAE+ACE=90°,ACE=FAB,又AEC=FBA=90°,AECFBA,CE=AB=4,S阴影=8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.14、到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一【解析】从作图方法以及作图结果入手考虑其作图依据.【详解】解:依题意,APAM,BPBM,根据垂直平分线的定义可知PM直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.15、2(x+1)2。【解析】试题解析:原式=2(x2+2x+1)=2(x+1)2.考点:提公因式法与公式法的综合运用.16、【解析】根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出ADFFEC(SSS),结论正确;根据三角形中位线定理可得出EFAB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论正确;根据三角形中位线定理可得出DFBC、DF=BC,进而可得出ADFABC,再利用相似三角形的性质可得出,结论正确此题得解【详解】解:D、E、F分别为AB、BC、AC的中点,DE、DF、EF为ABC的中位线,AD=AB=FE,AF=AC=FC,DF=BC=EC在ADF和FEC中,ADFFEC(SSS),结论正确;E、F分别为BC、AC的中点,EF为ABC的中位线,EFAB,EF=AB=AD,四边形ADEF为平行四边形AB=AC,D、F分别为AB、AC的中点,AD=AF,四边形ADEF为菱形,结论正确;D、F分别为AB、AC的中点,DF为ABC的中位线,DFBC,DF=BC,ADFABC,结论正确故答案为【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键17、 【解析】 DEBC 即 18、45°【解析】运用正n边形的中心角的计算公式计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为,故答案为45°.【点睛】本题考查了正n边形中心角的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1【解析】试题分析:根据相似三角形的判定与性质,可得答案试题解析:DEAB,BED=90°,又C=90°,BED=C又B=B,BEDBCA,DE=1考点:相似三角形的判定与性质20、(1);(2);(3)P1(3,-3),P2(,3),P3(,3)【解析】(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据的坐标,易求得直线的解析式由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标【详解】解:(1)把代入,可以求得 (2)过点作轴分别交线段和轴于点,在中,令,得 设直线的解析式为 可求得直线的解析式为: S四边形ABCD 设 当时,有最大值 此时四边形ABCD面积有最大值 (3)如图所示,如图:过点C作CP1x轴交抛物线于点P1,过点P1作P1E1BC交x轴于点E1,此时四边形BP1CE1为平行四边形,C(0,-3)设P1(x,-3)x2-x-3=-3,解得x1=0,x2=3,P1(3,-3);平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,C(0,-3)设P(x,3),x2-x-3=3,x2-3x-8=0解得x=或x=,此时存在点P2(,3)和P3(,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3)【点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大21、(1)见解析;(2)见解析【解析】(1)求出EFAC,根据EFAC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CEAB,ACAB,推出 AC CE,根据菱形的判定推出即可.【详解】(1)证明:ACB90°,DE是BC的垂直平分线,BDEACB90°,EFAC,EFAC,四边形ACEF是平行四边形,AFCE;(2)当B30°时,四边形ACEF是菱形,证明:B30°,ACB90°,ACAB,DE是BC的垂直平分线,BDDC,DEAC,BEAE,ACB90°,CEAB,CEAC,四边形ACEF是平行四边形,四边形ACEF是菱形,即当B30°时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.22、(1)y=1x1(1)1(3)x1【解析】试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kxk计算出k的值,从而得到一次函数解析式为y=1x1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x1时,直线y=kxk都在y=x的上方,即函数y=kxk的值大于函数y=x的值试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kxk得1kk=1,解得k=1,所以一次函数解析式为y=1x1;(1)把x=0代入y=1x1得y=1,则B点坐标为(0,1),所以SAOB=×1×1=1;(3)自变量x的取值范围是x1考点:两条直线相交或平行问题23、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)若全部销售完,方案一获利最大,最大利润是1800元【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)设购进甲种纪念品a(a60)件,则购进乙种纪念品(80a)件由题意得:100a+50(80a)7100解得a1又a60所以a可取60、61、1即有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)设利润为W,则W=20a+30(80a)=10a+2400所以W是a的一次函数,100,W随a的增大而减小所以当a最小时,W最大此时W=10×60+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.24、(20-5)千米. 【解析】分析:作BDAC,设AD=x,在RtABD中求得BD=x,在RtBCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案详解:过点B作BD AC,依题可得:BAD=60°,CBE=37°,AC=13(千米),BDAC,ABD=30°,CBD=53°,在RtABD中,设AD=x,tanABD= 即tan30°=,BD=x,在RtDCB中,tanCBD= 即tan53°=,CD= CD+AD=AC,x+=13,解得,x= BD=12-,在RtBDC中,cosCBD=tan60°=,即:BC=(千米),故B、C两地的距离为(20-5)千米. 点睛:此题考查了方向角问题此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解25、证明见解析.【解析】由ADBC得ADBDBC,根据已知证明AEDDCB(AAS),即可解题.【详解】解:ADBCADBDBCDCBC于点C,AEBD于点ECAED90°又DBDAAEDDCB(AAS)AECD【点睛】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.26、观景亭D到南滨河路AC的距离约为248米【解析】过点D作DEAC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题【详解】过点D作DEAC,垂足为E,设BE=x,在RtDEB中,tanDBE=,DBC=65°,DE=xtan65° 又DAC=45°,AE=DE132+x=xtan65°,解得x115.8,DE248(米) 观景亭D到南滨河路AC的距离约为248米27、+4【解析】原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值【详解】原式+2+2×+4【点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键