安徽省阜阳市太和县2023年中考数学押题试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1关于ABCD的叙述,不正确的是()A若ABBC,则ABCD是矩形B若ACBD,则ABCD是正方形C若ACBD,则ABCD是矩形D若ABAD,则ABCD是菱形2如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()ABCD3如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB1,CD3,那么EF的长是( )ABCD4抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)D(-2,-3)5下列调查中适宜采用抽样方式的是()A了解某班每个学生家庭用电数量 B调查你所在学校数学教师的年龄状况C调查神舟飞船各零件的质量 D调查一批显像管的使用寿命6抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x27目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A0.4×108B4×108C4×108D4×1088如图,CD是O的弦,O是圆心,把O的劣弧沿着CD对折,A是对折后劣弧上的一点,CAD=100°,则B的度数是() A100°B80°C60°D50°9如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()AmBmCm=Dm=10数据”1,2,1,3,1”的众数是( )A1 B1.5 C1.6 D3二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在四边形ABCD中,BD90°,AB3, BC2,tanA,则CD_12已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 13如图,在 RtABC 中,C=90°,AM 是 BC 边上的中线,cosAMC ,则 tanB 的值为_14如图,在ABC中,AB=AC,tanACB=2,D在ABC内部,且AD=CD,ADC=90°,连接BD,若BCD的面积为10,则AD的长为_15不等式组的解集是_;16如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_海里(不近似计算)三、解答题(共8题,共72分)17(8分)已知:在O中,弦AB=AC,AD是O的直径求证:BD=CD18(8分)解不等式组 ,并把解集在数轴上表示出来.19(8分)解分式方程:20(8分)先化简,再求值:,其中x=,y=21(8分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得ADP=60°,然后沿河岸走了110米到达C处,测得BCP=30°,求这条河的宽(结果保留根号)22(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且PBD是以BD为直角边的直角三角形,求点P的坐标23(12分)学校实施新课程改革以来,学生的学习能力有了很大提高王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2)请根据统计图解答下列问题:本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率24某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论【详解】解:A、若ABBC,则是矩形,正确;B、若,则是正方形,不正确;C、若,则是矩形,正确;D、若,则是菱形,正确;故选B【点睛】本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键2、C【解析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形;3、C【解析】易证DEFDAB,BEFBCD,根据相似三角形的性质可得= ,=,从而可得+=+=1然后把AB=1,CD=3代入即可求出EF的值【详解】AB、CD、EF都与BD垂直,ABCDEF,DEFDAB,BEFBCD,= ,=,+=+=1.AB=1,CD=3,+=1,EF=.故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.4、A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h5、D【解析】根据全面调查与抽样调查的特点对各选项进行判断【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查故选:D【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度6、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键7、C【解析】科学记数法的表示形式为a×10 的形式,其中1a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000 000 04=4×10,故选C【点睛】此题考查科学记数法,难度不大8、B【解析】试题分析:如图,翻折ACD,点A落在A处,可知A=A=100°,然后由圆内接四边形可知A+B=180°,解得B=80°.故选:B9、C【解析】试题解析:一元二次方程2x2+3x+m=0有两个相等的实数根,=32-4×2m=9-8m=0,解得:m=故选C10、A【解析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解【详解】在这一组数据中1是出现次数最多的,故众数是1故选:A【点睛】本题为统计题,考查众数的意义众数是一组数据中出现次数最多的数据,注意众数可以不止一个二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】延长AD和BC交于点E,在直角ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角CDE中利用三角函数的定义求解【详解】如图,延长AD、BC相交于点E,B=90°,BE=,CE=BE-BC=2,AE=,又CDE=CDA=90°,在RtCDE中,CD=.12、1【解析】试题分析:因为2+24,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1考点:等腰三角形的性质;三角形三边关系13、【解析】根据cosAMC ,设, ,由勾股定理求出AC的长度,根据中线表达出BC即可求解【详解】解:cosAMC ,设, ,在RtACM中,AM 是 BC 边上的中线,BM=MC=3x,BC=6x,在RtABC中,故答案为:【点睛】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义14、5 【解析】作辅助线,构建全等三角形和高线DH,设CMa,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明ADGCDH(AAS),可得DGDHMG作辅助线,构建全等三角形和高线DH,设CMa,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明ADGCDH(AAS),可得DGDHMG,AGCHa,根据AMAGMG,列方程可得结论,AGCHa,根据AMAGMG,列方程可得结论【详解】解:过D作DHBC于H,过A作AMBC于M,过D作DGAM于G,设CMa,ABAC,BC2CM2a,tanACB2,2,AM2a,由勾股定理得:ACa,SBDCBCDH10,2aDH10,DH,DHMHMGMGD90°,四边形DHMG为矩形,HDG90°HDCCDG,DGHM,DHMG,ADC90°ADGCDG,ADGCDH,在ADG和CDH中,ADGCDH(AAS),DGDHMG,AGCHa,AMAGMG,即2aa,a220,在RtADC中,AD2CD2AC2,ADCD,2AD25a2100,AD5或5(舍),故答案为5【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AGCH是解决问题的关键,并利用方程的思想解决问题15、x1【解析】分析:分别求出不等式组中两个不等式的解集,找出解集的公共部分即可确定出不等式组的解集.详解: ,由得:x由得:.则不等式组的解集为:x.故答案为x1.点睛:本题主要考查了解一元一次不等式组.16、6 【解析】试题分析:过S作AB的垂线,设垂足为C根据三角形外角的性质,易证SB=AB在RtBSC中,运用正弦函数求出SC的长解:过S作SCAB于CSBC=60°,A=30°,BSA=SBCA=30°,即BSA=A=30°SB=AB=1RtBCS中,BS=1,SBC=60°,SC=SBsin60°=1×=6(海里)即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里故答案为:6三、解答题(共8题,共72分)17、证明见解析【解析】根据AB=AC,得到,于是得到ADB=ADC,根据AD是O的直径,得到B=C=90°,根据三角形的内角和定理得到BAD=DAC,于是得到结论【详解】证明:AB=AC,ADB=ADC,AD是O的直径,B=C=90°,BAD=DAC,BD=CD【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键18、不等式组的解集为,在数轴上表示见解析.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【详解】由2(x+2)3x+3,可得:x1,由,可得:x3,则不等式组的解为:1x3,不等式组的解集在数轴上表示如图所示:【点睛】本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示19、无解【解析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零【详解】解:两边同乘以(x+2)(x2)得:x(x+2)(x+2)(x2)=8去括号,得:+2x+4=8 移项、合并同类项得:2x=4 解得:x=2经检验,x=2是方程的增根 方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验20、x+y,【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题试题解析:原式= =x+y,当x=,y=2时,原式=2+2=21、米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AEPQ于E,CFMN于F.PQMN,四边形AECF为矩形,EC=AF,AE=CF.设这条河宽为x米,AE=CF=x.在RtAED中, PQMN, 在RtBCF中, EC=ED+CD,AF=AB+BF, 解得 这条河的宽为米.22、(1)B(0,1);(1)y=0.5x11x+1;(3)P1(1,0)和P1(7.15,0);【解析】(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1得出可设二次函数y=ax1+bx+c=a(x1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可【详解】(1)y=x+1交x轴于点A(4,0),0=×(4)+m,m=1,与y轴交于点B,x=0,y=1B点坐标为:(0,1),(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1可设二次函数y=a(x1)1把B(0,1)代入得:a=0.5二次函数的解析式:y=0.5x11x+1;(3)()当B为直角顶点时,过B作BP1AD交x轴于P1点由RtAOBRtBOP1,得:OP1=1,P1(1,0),()作P1DBD,连接BP1,将y=0.5x+1与y=0.5x11x+1联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时DAP1=BAO,BOA=ADP1,ABOAP1D, ,解得:AP1=11.15,则OP1=11.154=7.15,故P1点坐标为(7.15,0);点P的坐标为:P1(1,0)和P1(7.15,0) 【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解23、(1)20;(2)作图见试题解析;(3)【解析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)C类女生:20×25%2=3(名);D类男生:20×(115%50%25%)1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:24、(1);(1) ;(3);【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1=;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1=故答案为考点:列表法与树状图法