山东省济南市平阴县2023年中考数学适应性模拟试题含解析.doc
-
资源ID:87999984
资源大小:944.50KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省济南市平阴县2023年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在平面直角坐标系中,将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是( )A(2,4)B(1,5)C(1,-3)D(-5,5)2一元二次方程2x23x+1=0的根的情况是()A有两个相等的实数根B有两个不相等的实数根C只有一个实数根D没有实数根3如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )AMBNCPDQ4已知二次函数y=x2+bx9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()Ax=1Bx=Cx=1Dx=5一元二次方程x22x0的根是()Ax2Bx0Cx10,x22Dx10,x226如图,在ABC中,EFBC,S四边形BCFE=8,则SABC=( )A9B10C12D137在数轴上表示不等式组的解集,正确的是()ABCD8如图,点ABC在O上,OABC,OAC=19°,则AOB的大小为()A19°B29°C38°D52°9下面的图形中,既是轴对称图形又是中心对称图形的是( ) A B C D10如图1,一个扇形纸片的圆心角为90°,半径为1如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()ABCD11已知如图,ABC为直角三角形,C90°,若沿图中虚线剪去C,则1+2等于()A315°B270°C180°D135°12下列调查中,最适合采用普查方式的是()A对太原市民知晓“中国梦”内涵情况的调查B对全班同学1分钟仰卧起坐成绩的调查C对2018年央视春节联欢晚会收视率的调查D对2017年全国快递包裹产生的包装垃圾数量的调查二、填空题:(本大题共6个小题,每小题4分,共24分)13若圆锥的地面半径为,侧面积为,则圆锥的母线是_14若正六边形的边长为2,则此正六边形的边心距为_15在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是_,的坐标是_16已知|x|=3,y2=16,xy0,则xy=_17如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,ACD=120°,CD是O的切线:若O的半径为2,则图中阴影部分的面积为_18如图,点A,B,C在O上,四边形OABC是平行四边形,ODAB于点E,交O于点D,则BAD=_°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D(1)求证:DB=DE;(2)若AB=12,BD=5,求O的半径. 20(6分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.21(6分)如图,二次函数y+mx+4m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C抛物线的对称轴是直线x2,D是抛物线的顶点(1)求二次函数的表达式;(2)当x1时,请求出y的取值范围;(3)连接AD,线段OC上有一点E,点E关于直线x2的对称点E'恰好在线段AD上,求点E的坐标22(8分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:收集数据 从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min): 30 60 81 50 40 110 130 146 90 100 60 81 120 140 70 81 10 20 100 81整理数据 按如下分段整理样本数据并补全表格:课外阅读时间(min)等级DCBA人数38分析数据 补全下列表格中的统计量:平均数中位数众数80得出结论 (1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ; (2)如果该校现有学生400人,估计等级为“”的学生有多少名? (3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年 (按52周计算)平均阅读多少本课外书?23(8分)如图,在直角坐标系xOy中,直线与双曲线相交于A(1,a)、B两点,BCx轴,垂足为C,AOC的面积是1求m、n的值;求直线AC的解析式24(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,每天可销售_ 件,每件盈利_ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元要想平均每天赢利2000元,可能吗?请说明理由25(10分)()如图已知四边形中,BC=b,求:对角线长度的最大值;四边形的最大面积;(用含,的代数式表示)()如图,四边形是某市规划用地的示意图,经测量得到如下数据:,请你利用所学知识探索它的最大面积(结果保留根号)26(12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”(1)概念理解:如图1,在ABC中,AC6,BC3,ACB30°,试判断ABC是否是”等高底”三角形,请说明理由(1)问题探究:如图1,ABC是“等高底”三角形,BC是”等底”,作ABC关于BC所在直线的对称图形得到A'BC,连结AA交直线BC于点D若点B是AAC的重心,求的值(3)应用拓展:如图3,已知l1l1,l1与l1之间的距离为1“等高底”ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍将ABC绕点C按顺时针方向旋转45°得到A'B'C,AC所在直线交l1于点D求CD的值27(12分)程大位是珠算发明家,他的名著直指算法统宗详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:由平移规律可得将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(1,5),故选B考点:点的平移2、B【解析】试题分析:对于一元二次方程,当=时方程有两个不相等的实数根,当=时方程有两个相等的实数根,当=时方程没有实数根.根据题意可得:=,则方程有两个不相等的实数根.3、A【解析】解:点P所表示的数为a,点P在数轴的右边,-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,数-3a所对应的点可能是M,故选A点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍4、D【解析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴【详解】解:A在反比例函数图象上,可设A点坐标为(a,)A、B两点关于原点对称,B点坐标为(a,)又A、B两点在二次函数图象上,代入二次函数解析式可得:,解得:或,二次函数对称轴为直线x=故选D【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系5、C【解析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解【详解】方程变形得:x(x1)0,可得x0或x10,解得:x10,x11故选C【点睛】考查了解一元二次方程因式分解法,熟练掌握因式分解的方法是解本题的关键6、A【解析】由在ABC中,EFBC,即可判定AEFABC,然后由相似三角形面积比等于相似比的平方,即可求得答案【详解】,又EFBC,AEFABC1SAEF=SABC又S四边形BCFE=8,1(SABC8)=SABC,解得:SABC=1故选A7、C【解析】解不等式组,再将解集在数轴上正确表示出来即可【详解】解1x0得x1,解2x40得x2,所以不等式的解集为1x2,故选C.【点睛】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.8、C【解析】由AOBC,得到ACB=OAC=19°,根据圆周角定理得到AOB=2ACB=38°.【详解】AOBC,ACB=OAC,而OAC=19°,ACB=19°,AOB=2ACB=38°故选:C【点睛】本题考查了圆周角定理与平行线的性质解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.9、B【解析】试题解析:A. 是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形;C.是中心对称图形,但不是轴对称图形;D.是轴对称图形不是中心对称图形;故选B.10、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出AOD,根据扇形面积公式、三角形面积公式计算,得到答案【详解】解:连接OD,在RtOCD中,OCOD2,ODC30°,CD COD60°,阴影部分的面积 ,故选:C【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键11、B【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答【详解】如图,1、2是CDE的外角,1=4+C,2=3+C,即1+2=2C+(3+4),3+4=180°-C=90°,1+2=2×90°+90°=270°故选B【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和12、B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查二、填空题:(本大题共6个小题,每小题4分,共24分)13、13【解析】试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解设母线长为R,则: 解得: 故答案为13.14、.【解析】连接OA、OB,根据正六边形的性质求出AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可【详解】连接OA、OB、OC、OD、OE、OF,正六边形ABCDEF,AOB=BOC=COD=DOE=EOF=AOF,AOB=60°,OA=OB,AOB是等边三角形,OA=OB=AB=2,ABOM,AM=BM=1,在OAM中,由勾股定理得:OM=15、 【解析】设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得出结论【详解】设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)2018=4×504+2,K2018为(1009,0)故答案为:(),(1009,0)【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键16、±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想详解:因为|x|=1,所以x=±1因为y2=16,所以y=±2又因为xy0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论17、 【解析】试题分析:连接OC,求出D和COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案连接OC,AC=CD,ACD=120°,CAD=D=30°,DC切O于C,OCCD,OCD=90°,COD=60°,在RtOCD中,OCD=90°,D=30°,OC=2,CD=2,阴影部分的面积是SOCDS扇形COB=×2×2=2,故答案为2考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.18、15【解析】根据圆的基本性质得出四边形OABC为菱形,AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案【详解】解:OABC为平行四边形,OA=OC=OB, 四边形OABC为菱形,AOB=60°,ODAB, BOD=30°, BAD=30°÷2=15°故答案为:15.【点睛】本题主要考查的是圆的基本性质问题,属于基础题型根据题意得出四边形OABC为菱形是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2) 【解析】试题分析:(1)由切线性质及等量代换推出4=5,再利用等角对等边可得出结论;(2)由已知条件得出sinDEF和sinAOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)DCOA, 1+3=90°, BD为切线,OBBD, 2+5=90°, OA=OB, 1=2,3=4,4=5,在DEB中, 4=5,DE=DB.(2)作DFAB于F,连接OE,DB=DE, EF=BE=3,在 RTDEF中,EF=3,DE=BD=5,EF=3 , DF=sinDEF= , AOE=DEF, 在RTAOE中,sinAOE= , AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.20、(1):,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:,共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,在规划1中,(小黄赢);红心牌点数是黑桃牌点数的整倍数有4种可能,在规划2中,(小黄赢).,小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.21、(1)y=x11x+6;(1)y;(3)(0,4)【解析】(1)利用对称轴公式求出m的值,即可确定出解析式;(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可【详解】(1)抛物线对称轴为直线x=1,=1,即m=1,则二次函数解析式为y=x11x+6;(1)当x=时,y=;当x=1时,y=x1位于对称轴右侧,y随x的增大而减小,y;(3)当x=1时,y=8,顶点D的坐标是(1,8),令y=0,得到:x11x+6=0,解得:x=6或x=1点A在点B的左侧,点A坐标为(6,0)设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11设E(0,n),则有E(4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4)【点睛】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键22、(1)填表见解析;(2)160名;(3)平均数;26本.【解析】【分析】先确定统计表中的C、A等级的人数,再根据中位数和众数的定义得到样本数据的中位数和众数;(1)根据统计量,结合统计表进行估计即可;(2)用“B”等级人数所占的比例乘以全校的学生数即可得;(3)选择平均数,计算出全年阅读时间,然后再除以阅读一本课外书的时间即可得.【详解】整理数据 按如下分段整理样本数据并补全表格:课外阅读时间(min)等级DCBA人数3584分析数据 补全下列表格中的统计量:平均数中位数众数808181得出结论(1)观察统计量表格可以估计该校学生每周用于课外阅读时间的情况等级B ,故答案为:B;(2) 8÷20×400=160 该校等级为“”的学生有160名; (3) 选统计量:平均数80×52÷160=26 ,该校学生每人一年平均阅读26本课外书.【点睛】本题考查了中位数、众数、平均数、统计表、用样本估计总体等知识,熟练掌握各统计量的求解方法是关键.23、(1)m1,n1;(2)yx【解析】(1)由直线与双曲线相交于A(1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据AOC的面积为1可求得点A的坐标,从而求得结果;(2)设直线AC的解析式为ykxb,由图象过点A(1,1)、C(1,0)根据待定系数法即可求的结果.【详解】(1)直线与双曲线相交于A(1,a)、B两点,B点横坐标为1,即C(1,0)AOC的面积为1,A(1,1)将A(1,1)代入,可得m1,n1;(2)设直线AC的解析式为ykxbykxb经过点A(1,1)、C(1,0)解得k,b直线AC的解析式为yx【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.24、(1)(20+2x),(40x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元【解析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价进价降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可【详解】(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,故答案为(20+2x),(40-x);(2)、根据题意可得:(20+2x)(40x)=1200,解得:即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40x)=2000, , 此方程无解, 不可能盈利2000元【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型解决这个问题的关键就是要根据题意列出方程25、(1);(2)150475475.【解析】(1)由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;连接AC,求得AD2CD2,利用不等式的性质可求得ADCD的最大值,从而可求得四边形ABCD面积的最大值;(2)连接AC,延长CB,过点A做AECB交CB的延长线于E,可先求得ABC的面积,结合条件可求得D45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得ACD的面积即可【详解】(1)因为BD90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD,连接AC,则AC2AB2BC2a2b2AD2CD2,SACDAD×CD(AD2CD2)(a2b2),所以四边形ABCD的最大面积(a2b2)ab;(2)如图,连接AC,延长CB,过点A作AECB交CB的延长线于E,因为AB20,ABE180°ABC60°,所以AEAB×sin60°10,EBAB×cos60°10,SABCAE×BC150,因为BC30,所以ECEBBC40,AC10,因为ABC120°,BADBCD195°,所以D45°,则ACD中,D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,交点即为圆O,如图,当点D与AC的距离最大时,ACD的面积最大,AC的中垂线交圆O于点D,交AC于F,FD即为所求最大值,连接OA、OC,AOC2ADC90°,OAOC,所以AOC,AOF等腰直角三角形,AOOD5,OFAF5,DF55,SACDAC×DF5×(55)475475,所以SmaxSABCSACD150475475.【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD面积最大时,D点的位置是解题的关键本题考查知识点较多,综合性很强,计算量很大,难度适中26、(1)ABC是“等高底”三角形;(1);(3)CD的值为,1,1 【解析】(1)过A作ADBC于D,则ADC是直角三角形,ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.(1)点B是的重心,得到设 则 根据勾股定理可得即可求出它们的比值.(3)分两种情况进行讨论:当时和当时.【详解】(1)ABC是“等高底”三角形;理由:如图1,过A作ADBC于D,则ADC是直角三角形,ADC=90°,ACB=30°,AC=6, AD=BC=3,即ABC是“等高底”三角形;(1)如图1,ABC是“等高底”三角形,BC是“等底”, ABC关于BC所在直线的对称图形是 ,ADC=90°,点B是的重心, 设 则 由勾股定理得 (3)当时,如图3,作AEBC于E,DFAC于F,“等高底”ABC的“等底”为BC,l1l1,l1与l1之间的距离为1,. BE=1,即EC=4, ABC绕点C按顺时针方向旋转45°得到A'B'C,DCF=45°,设 l1l1, 即 如图4,此时ABC等腰直角三角形,ABC绕点C按顺时针方向旋转45°得到,是等腰直角三角形, 当时,如图5,此时ABC是等腰直角三角形,ABC绕点C按顺时针方向旋转45°得到A'B'C, 如图6,作于E,则 ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,l1,即直线与l1无交点,综上所述,CD的值为【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.27、大和尚有25人,小和尚有75人【解析】设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论【详解】解:设大和尚有x人,小和尚有y人,依题意,得:,解得:答:大和尚有25人,小和尚有75人【点睛】考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键