山东省枣庄峄城区六校联考2023届中考数学考试模拟冲刺卷含解析.doc
-
资源ID:88000029
资源大小:733.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省枣庄峄城区六校联考2023届中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A向左平移1个单位B向右平移3个单位C向上平移3个单位D向下平移1个单位2观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个A6055B6056C6057D60583方程组的解x、y满足不等式2xy1,则a的取值范围为()AaBaCaDa4下列方程中,没有实数根的是()Ax22x=0Bx22x1=0Cx22x+1 =0Dx22x+2=05计算31的结果是()A2 B2 C4 D46如图,ABC中AB两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC,且ABC与ABC的位似比为2:1设点B的对应点B的横坐标是a,则点B的横坐标是()ABCD7如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )ABCD8如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()ABCD9如果,那么代数式的值为( )A1B2C3D410如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A5BCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将EBF沿EF所在直线折叠得到EBF,连接BD,则BD的最小值是_12已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果ab0,那么y1与y2的大小关系是:y1_y2;13已知点P(1,2)关于x轴的对称点为P,且P在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 14计算:的值是_15计算:_.16同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 三、解答题(共8题,共72分)17(8分)如图,在ABC中,AB=AC,以AB为直径的O与BC交于点D,过点D作ABD=ADE,交AC于点E(1)求证:DE为O的切线(2)若O的半径为,AD=,求CE的长18(8分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b1)x+c2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点当PQ=时,求P点坐标19(8分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,作轴于E点求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围20(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元 (1)求A、B两种钢笔每支各多少元? (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案? (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?21(8分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由22(10分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3)(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由23(12分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”. (1)已知点A的坐标为,若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;点C在直线x5上,且点C为点A,B的“和谐点”,求直线AC的表达式.(2)O的半径为r,点为点、的“和谐点”,且DE2,若使得与O有交点,画出示意图直接写出半径r的取值范围.24如图1,二次函数yax22ax3a(a0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C求抛物线的函数关系式;如图2,点E是y轴负半轴上一点,连接BE,将OBE绕平面内某一点旋转180°,得到PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MFx轴于点F,若线段MF:BF1:2,求点M、N的坐标;点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x21图象不经过A点,故D符合题意;故选D.2、D【解析】设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有an个(n为正整数),观察图形,可知:a11+3×1,a21+3×2,a31+3×3,a41+3×4,an1+3n(n为正整数),a20191+3×20191故选:D【点睛】此题考查规律型:图形的变化,解题关键在于找到规律3、B【解析】方程组两方程相加表示出2xy,代入已知不等式即可求出a的范围【详解】 +得: 解得: 故选:B【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值4、D【解析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可【详解】A、=(2)24×1×0=40,方程有两个不相等的实数根,所以A选项错误;B、=(2)24×1×(1)=80,方程有两个不相等的实数根,所以B选项错误;C、=(2)24×1×1=0,方程有两个相等的实数根,所以C选项错误;D、=(2)24×1×2=40,方程没有实数根,所以D选项正确故选D5、D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1故选D.6、D【解析】设点B的横坐标为x,然后表示出BC、BC的横坐标的距离,再根据位似变换的概念列式计算【详解】设点B的横坐标为x,则B、C间的横坐标的长度为1x,B、C间的横坐标的长度为a+1,ABC放大到原来的2倍得到ABC,2(1x)a+1,解得x(a+3),故选:D【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键7、B【解析】根据俯视图可确定主视图的列数和每列小正方体的个数【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图8、B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形故选B考点:简单组合体的三视图9、A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得【详解】解:原式= = 3x-4y=0,3x=4y原式=1故选:A【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则10、C【解析】先利用勾股定理求出AC的长,然后证明AEOACD,根据相似三角形对应边成比例列式求解即可【详解】AB=6,BC=8,AC=10(勾股定理);AO=AC=5,EOAC,AOE=ADC=90°,EAO=CAD,AEOACD,即 ,解得,AE=,DE=8=,故选:C【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、11【解析】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时时,此时BD的值最小,根据勾股定理求出DE,根据折叠的性质可知BE=BE=1,即可求出BD【详解】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时时,此时BD的值最小,根据折叠的性质,EBFEBF,EBBF,EB=EB,E是AB边的中点,AB=4,AE=EB=1,AD=6,DE=,BD=11【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B在何位置时,BD的值最小是解题的关键12、【解析】根据反比例函数的性质求解【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而ab0,所以y1y2故答案为:【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k也考查了反比例函数的性质13、y=1x+1【解析】由对称得到P(1,2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】点P(1,2)关于x轴的对称点为P,P(1,2),P在直线y=kx+3上,2=k+3,解得:k=1,则y=1x+3,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=1x+1故答案为y=1x+1考点:一次函数图象与几何变换14、-1【解析】解:=1故答案为:115、5.【解析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算.16、【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,两个骰子的点数相同的有6种情况,两个骰子的点数相同的概率为:=故答案为考点:列表法与树状图法三、解答题(共8题,共72分)17、 (1)证明见解析;(2)CE=1【解析】(1)求出ADO+ADE=90°,推DEOD,根据切线的判定推出即可;(2)求出CD,AC的长,证CDECAD,得出比例式,求出结果即可【详解】(1)连接OD,AB是直径,ADB=90°,ADO+BDO=90°,OB=OD,BDO=ABD,ABD=ADE,ADO+ADE=90°,即,ODDE,OD为半径,DE为O的切线;(2)O的半径为,AB=2OA=AC,ADB=90°,ADC=90°,在RtADC中,由勾股定理得:DC=5,ODE=ADC=90°,ODB=ABD=ADE,EDC=ADO,OA=OD,ADO=OAD,AB=AC,ADBC,OAD=CAD,EDC=CAD,C=C,CDECAD,=,=,解得:CE=1【点睛】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定.18、(1)y=x2x+2;(2)2x0;(3)P点坐标为(1,2)【解析】分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PEx轴于点E,交AB于点D,根据题意得出PDQ=ADE=45°,PD=1,然后设点P(x,x2x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标详解:(1)当y=0时,x+2=0,解得x=2,当x=0时,y=0+2=2,则点A(2,0),B(0,2),把A(2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得该抛物线的解析式为y=x2x+2;(2)ax2+(b1)x+c2,ax2+bx+cx+2,则不等式ax2+(b1)x+c2的解集为2x0;(3)如图,作PEx轴于点E,交AB于点D,在RtOAB中,OA=OB=2,OAB=45°,PDQ=ADE=45°,在RtPDQ中,DPQ=PDQ=45°,PQ=DQ=,PD=1,设点P(x,x2x+2),则点D(x,x+2),PD=x2x+2(x+2)=x22x,即x22x=1,解得x=1,则x2x+2=2,P点坐标为(1,2)点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型利用待定系数法求出函数解析式是解决这个问题的关键19、(1),;(2)8;(3)或【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解试题解析:解:(1)OB=4,OE=2,BE=2+4=1CEx轴于点E,tanABO=,OA=2,CE=3,点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(2,3)一次函数y=ax+b的图象与x,y轴交于B,A两点,解得:故直线AB的解析式为反比例函数的图象过C,3=,k=1,该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,1),则BOD的面积=4×1÷2=2,BOC的面积=4×3÷2=1,故OCD的面积为2+1=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x2或0x1点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点20、(1) A种钢笔每只15元 B种钢笔每只20元;(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3) 定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得 ,解得: ,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,42.4z<45,z是整数z=43,44,90-z=47,或46;共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,-4<0,W有最大值,a为正整数,当a=3,或a=4时,W最大,W最大=-4×(3-)²+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元21、(1);(2)这个游戏不公平,理由见解析.【解析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平画树状图得:共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,P(甲胜)=,P(乙胜)=P(甲胜)P(乙胜),故这个游戏不公平【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平22、 (1) y=x2+2x+3;(2)见解析.【解析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),得,该抛物线的解析式为y=x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:抛物线y=x2+2x+3=(x1)2+4,点B(3,0),点C(0,3),抛物线的对称轴为直线x=1,点A的坐标为(1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3t)2=t26t+10,当AC为斜边时,10=4+t2+t26t+10,解得,t1=1或t2=2,点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t26t+10,解得,t=,点Q的坐标为(1,),当CQ时斜边时,t26t+10=4+t2+10,解得,t=,点Q的坐标为(1,),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,)时,使得以A、C、Q为顶点的三角形为直角三角形【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.23、(1)点C坐标为或;yx2或yx3;(2)或【解析】(1)根据“和谐点”的定义即可解决问题;首先求出点C坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题【详解】(1)如图1观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);如图2由图可知,B(5,3)A(1,3),AB=3ABC为等腰直角三角形,BC=3,C1(5,7)或C2(5,1)设直线AC的表达式为y=kx+b(k0),当C1(5,7)时,y=x+2,当C2(5,1)时,y=x+3综上所述:直线AC的表达式是y=x+2或y=x+3(2)分两种情况讨论:当点F在点E左侧时:连接OD则OD=,当点F在点E右侧时:连接OE,ODE(1,2),D(1,3),OE=,OD=,综上所述:或【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题24、(1)(1,4a);(2)y=x2+2x+3;M(,)、N(,);点Q的坐标为(1,4+2)或(1,42)【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标(2)以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出ACD是个直角三角形,且ACD90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值将OBE绕平面内某一点旋转180°得到PMN,说明了PM正好和x轴平行,且PMOB1,所以求M、N的坐标关键是求出点M的坐标;首先根据的函数解析式设出M点的坐标,然后根据题干条件:BF2MF作为等量关系进行解答即可设Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出CDQ45°,那么QGD为等腰直角三角形,即QD ²2QG ²2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标详解:(1)y=ax22ax3a=a(x1)24a,D(1,4a)(2)以AD为直径的圆经过点C,ACD为直角三角形,且ACD=90°;由y=ax22ax3a=a(x3)(x+1)知,A(3,0)、B(1,0)、C(0,3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a0,得:a=1,a=1,抛物线的解析式:y=x2+2x+3,D(1,4)将OBE绕平面内某一点旋转180°得到PMN,PMx轴,且PM=OB=1;设M(x,x2+2x+3),则OF=x,MF=x2+2x+3,BF=OF+OB=x+1;BF=2MF,x+1=2(x2+2x+3),化简,得:2x23x5=0解得:x1=1(舍去)、x2=.M(,)、N(,)设Q与直线CD的切点为G,连接QG,过C作CHQD于H,如下图:C(0,3)、D(1,4),CH=DH=1,即CHD是等腰直角三角形,QGD也是等腰直角三角形,即:QD2=2QG2;设Q(1,b),则QD=4b,QG2=QB2=b2+4;得:(4b)2=2(b2+4),化简,得:b2+8b8=0,解得:b=4±2;即点Q的坐标为(1,)或(1,)点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和Q半径间的数量关系是解题题目的关键