四川省遂宁高级实验学校2022-2023学年高三下学期一模考试数学试题含解析.doc
-
资源ID:88000075
资源大小:1.64MB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
四川省遂宁高级实验学校2022-2023学年高三下学期一模考试数学试题含解析.doc
2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在复平面内,复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限2已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD3我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( )ABCD4已知集合,若,则( )A或B或C或D或5若,则实数的大小关系为( )ABCD6已知且,函数,若,则( )A2BCD7设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为( )AB2CD8在中,则边上的高为( )AB2CD9明代数学家程大位(15331606年),有感于当时筹算方法的不便,用其毕生心血写出算法统宗,可谓集成计算的鼻祖如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题执行该程序框图,若输出的的值为,则输入的的值为( )ABCD10已知向量,则向量在向量上的投影是( )ABCD11已知随机变量服从正态分布,且,则( )ABCD12已知等差数列满足,公差,且成等比数列,则A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13在矩形中,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_.14命题“”的否定是_15正项等比数列|满足,且成等差数列,则取得最小值时的值为_16的展开式中的常数项为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.18(12分)设等比数列的前项和为,若()求数列的通项公式;()在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.19(12分)如图所示,在四棱锥中,平面,底面ABCD满足ADBC,E为AD的中点,AC与BE的交点为O.(1)设H是线段BE上的动点,证明:三棱锥的体积是定值;(2)求四棱锥的体积;(3)求直线BC与平面PBD所成角的余弦值20(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.21(12分)已知函数,(1)当时,求不等式的解集; (2)若函数的图象与轴恰好围成一个直角三角形,求的值22(10分)如图,在多面体中,四边形是菱形,平面,是的中点.()求证:平面平面;()求直线与平面所成的角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【详解】对应的点的坐标为在第二象限故选:B.【点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.2、C【解析】对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题3、B【解析】先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,其和等于16的结果,共2种等可能的结果,故概率.故选:B.【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.4、B【解析】因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.5、A【解析】将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.6、C【解析】根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,则,则.即.故选:C.【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.7、A【解析】由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率【详解】由题意,由双曲线定义得,从而得,在中,由余弦定理得,化简得故选:A【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式8、C【解析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.9、C【解析】根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.10、A【解析】先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.11、C【解析】根据在关于对称的区间上概率相等的性质求解【详解】,故选:C【点睛】本题考查正态分布的应用掌握正态曲线的性质是解题基础随机变量服从正态分布,则12、D【解析】先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【详解】由题意可知,所以可得面,设外接圆的半径为,由正弦定理可得,即,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【点睛】本题考查三棱锥的外接球的应用,属于中档题.14、,【解析】根据特称命题的否定为全称命题得到结果即可.【详解】解:因为特称命题的否定是全称命题,所以,命题,则该命题的否定是:,故答案为:,【点睛】本题考查全称命题与特称命题的否定关系,属于基础题15、2【解析】先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:2.【点睛】本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.16、160【解析】先求的展开式中通项,令的指数为3即可求解结论.【详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2)将直线参数方程代入圆的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】(1)直线的参数方程为(为参数),消去;得曲线的极坐标方程为.由,可得,即曲线的直角坐标方程为;(2)将直线的参数方程(为参数)代入的方程,可得,设,是点对应的参数值,则.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.18、();()详见解析.【解析】(),两式相减化简整理利用等比数列的通项公式即可得出()由题设可得,可得,利用错位相减法即可得出【详解】解:()因为,故,两式相减可得,故,因为是等比数列,又,所以,故,所以;()由题设可得,所以,所以,则,得:,所以,得证.【点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题19、(1)证明见解析 (2) (3)【解析】(1)因为底面ABCD为梯形,且,所以四边形BCDE为平行四边形,则BECD,又平面,平面,所以平面, 又因为H为线段BE上的动点,的面积是定值,从而三棱锥的体积是定值. (2)因为平面,所以,结合BECD,所以,又因为,且E为AD的中点,所以四边形ABCE为正方形,所以,结合,则平面,连接,则, 因为平面,所以,因为,所以是等腰直角三角形,O为斜边AC上的中点,所以,且,所以平面,所以PO是四棱锥的高,又因为梯形ABCD的面积为,在中,所以.(3)以O为坐标原点,建立空间直角坐标系,如图所示,则B(,0,0),C(0,0),D(,0),P(0,0,),则,设平面PBD的法向量为,则即则,令,得到, 设BC与平面PBD所成的角为,则,所以,所以直线BC与平面PBD所成角的余弦值为20、【解析】由不存在逆矩阵,可得,再利用特征多项式求出特征值3,0,利用矩阵乘法运算即可.【详解】因为不存在逆矩阵,所以.矩阵的特征多项式为,令,则或,所以,即,所以,所以【点睛】本题考查矩阵的乘法及特征值、特征向量有关的问题,考查学生的运算能力,是一道容易题.21、(1) (2)【解析】(1)当时,由可得,(所以,解得,所以不等式的解集为 (2)由题可得,因为函数的图象与轴恰好围成一个直角三角形,所以,解得,当时,函数的图象与轴没有交点,不符合题意;当时,函数的图象与轴恰好围成一个直角三角形,符合题意综上,可得22、 ()详见解析;()【解析】试题分析:()连接交于,得,所以面,又 ,得面,即可利用面面平行的判定定理,证得结论;()如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量 ,利用向量和向量夹角公式,即可求解与平面所成角的正弦值试题解析:()连接BD交AC于O,易知O是BD的中点,故OG/BE,BE面BEF,OG在面BEF外,所以OG/面BEF;又EF/AC,AC在面BEF外,AC/面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG面BEF;()如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则, , , ,设面ABF的法向量为,依题意有,令,直线AD与面ABF成的角的正弦值是