山东省青岛53中2023届中考冲刺卷数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在矩形ABCD中,E是AD上一点,沿CE折叠CDE,点D恰好落在AC的中点F处,若CD,则ACE的面积为()A1BC2D22如图,ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若A=60°,B=100°,BC=4,则扇形BDE的面积为何?()ABCD3下列命题是真命题的是()A一组对边平行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C两组对边分别相等的四边形是平行四边形D平行四边形既是中心对称图形,又是轴对称图形4估计介于( )A0与1之间B1与2之间C2与3之间D3与4之间5如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( ) A-5<t4 B3<t4 C-5<t<3 Dt>-56如图,在ABC中,ACB=90°,点D为AB的中点,AC=3,cosA=,将DAC沿着CD折叠后,点A落在点E处,则BE的长为()A5B4C7D57如图,AB是O的一条弦,点C是O上一动点,且ACB=30°,点E,F分别是AC,BC的中点,直线EF与O交于G,H两点,若O的半径为6,则GE+FH的最大值为()A6B9C10D128下列实数为无理数的是 ( )A-5BC0D9如图,已知AB是O的直径,弦CDAB于E,连接BC、BD、AC,下列结论中不一定正确的是()AACB=90°BOE=BECBD=BCD10如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是21,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A0.2B0.25C0.4D0.511如图,直线AB与直线CD相交于点O,E是COB内一点,且OEAB,AOC=35°,则EOD的度数是( )A155°B145°C135°D125°12甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=二、填空题:(本大题共6个小题,每小题4分,共24分)13已知点、都在反比例函数的图象上,若,则k的值可以取_写出一个符合条件的k值即可14分解因式:x32x2+x=_15如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,按照此做法进行下去,点A8的坐标为_16欣欣超市为促销,决定对A,B两种商品统一进行打8折销售,打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元,打折后,小敏买50件A商品和40件B商品仅需_元17如图,CB=CA,ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FGCA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:AC=FG;SFAB:S四边形CBFG=1:2;ABC=ABF;AD2=FQAC,其中正确的结论的个数是_18计算:的值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C(1)求点C和点A的坐标(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有_个交点;若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:_;当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标20(6分)某地铁站口的垂直截图如图所示,已知A=30°,ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号)21(6分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数22(8分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.当n=1时,判断线段PM与PN的数量关系,并说明理由;若PNPM,结合函数的图象,直接写出n的取值范围.23(8分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为yx150,成本为20元/件,月利润为W内(元);若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10a40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W外(元)(1)若只在国内销售,当x1000(件)时,y (元/件);(2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值24(10分)如图,沿AC方向开山修路为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取ABD=120°,BD=520m,D=30°那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?25(10分)如图1,已知直线l:y=x+2与y轴交于点A,抛物线y=(x1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n1)(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a请写出a与n的函数关系式如图2,连接AC,CD,若ACD=90°,求a的值26(12分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数27(12分)计算:参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求ACE的面积【详解】解:点F是AC的中点,AF=CF=AC,将CDE沿CE折叠到CFE,CD=CF=,DE=EF,AC=,在RtACD中,AD=1SADC=SAEC+SCDE,×AD×CD=×AC×EF+×CD×DE1×=EF+DE,DE=EF=1,SAEC=××1=故选B【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键2、C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:A=60°,B=100°,C=180°60°100°=20°,DE=DC,C=DEC=20°,BDE=C+DEC=40°,S扇形DBE=故选C点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=3、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对边分别相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法4、C【解析】解:,即估计在23之间故选C【点睛】本题考查估计无理数的大小5、B【解析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1x3的范围内有公共点可确定t的范围【详解】 抛物线y=-x2+mx的对称轴为直线x=2, , 解之:m=4, y=-x2+4x, 当x=2时,y=-4+8=4, 顶点坐标为(2,4), 关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4, 3<t4, 故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质6、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可【详解】解:连接AE,AC=3,cosCAB=,AB=3AC=9,由勾股定理得,BC=6,ACB=90°,点D为AB的中点,CD=AB=,SABC=×3×6=9,点D为AB的中点,SACD=SABC=,由翻转变换的性质可知,S四边形ACED=9,AECD,则×CD×AE=9,解得,AE=4,AF=2,由勾股定理得,DF=,AF=FE,AD=DB,BE=2DF=7,故选C【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等7、B【解析】首先连接OA、OB,根据圆周角定理,求出AOB=2ACB=60°,进而判断出AOB为等边三角形;然后根据O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可【详解】解:如图,连接OA、OB,ACB=30°,AOB=2ACB=60°,OA=OB,AOB为等边三角形,O的半径为6,AB=OA=OB=6,点E,F分别是AC、BC的中点,EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,当弦GH是圆的直径时,它的最大值为:6×2=12,GE+FH的最大值为:123=1故选:B【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度确定GH的位置是解题的关键.8、D【解析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】A、5是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、是无理数,选项正确.故选D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数9、B【解析】根据垂径定理及圆周角定理进行解答即可【详解】AB是O的直径,ACB=90°,故A正确;点E不一定是OB的中点,OE与BE的关系不能确定,故B错误;ABCD,AB是O的直径,BD=BC,故C正确;,故D正确故选B【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键10、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是;故选:B【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率11、D【解析】解: EOAB, 故选D.12、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、-1【解析】利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出,据此可得k的取值【详解】解:点、都在反比例函数的图象上,在每个象限内,y随着x的增大而增大,反比例函数图象在第一、三象限,的值可以取等,答案不唯一故答案为:【点睛】本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答14、x(x-1)2.【解析】由题意得,x32x2+x= x(x1)215、(128,0)【解析】点A1坐标为(1,0),且B1A1x轴,B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函数值就可以求出xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3,从而寻找出点A2、A3的坐标规律,最后求出A8的坐标【详解】点坐标为(1,0),轴点的横坐标为1,且点在直线上在中由勾股定理,得,在中, .故答案为 .【点睛】本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.16、1【解析】设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y的值,进而求解即可【详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得,解得所以0.8×(8×50+2×40)=1(元)即打折后,小敏买50件A商品和40件B商品仅需1元故答案为1【点睛】本题考查了利用二元一次方程组解决现实生活中的问题解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解17、【解析】由正方形的性质得出FAD90°,ADAFEF,证出CADAFG,由AAS证明FGAACD,得出ACFG,正确;证明四边形CBFG是矩形,得出SFABFBFGS四边形CBFG,正确;由等腰直角三角形的性质和矩形的性质得出ABCABF45°,正确;证出ACDFEQ,得出对应边成比例,得出正确【详解】解:四边形ADEF为正方形,FAD90°,ADAFEF,CADFAG90°,FGCA,GAFAFG90°,CADAFG,在FGA和ACD中,FGAACD(AAS),ACFG,正确;BCAC,FGBC,ACB90°,FGCA,FGBC,四边形CBFG是矩形,CBF90°,SFABFBFGS四边形CBFG,正确;CACB,CCBF90°,ABCABF45°,正确;FQEDQBADC,EC90°,ACDFEQ,AC:ADFE:FQ,ADFEAD2FQAC,正确;故答案为【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键18、-1【解析】解:=1故答案为:1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)C(2,-1),A(1,0);(2)3,0t1,(+2,1)或(-+2,1)或(-1,0)【解析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,A(1,0),B(3,0),抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,C(2,-1);(2)将x=0代入抛物线的解析式得:y=3,抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0t1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0t1如图2所示:PQAC且PQ=AC,四边形ACQP为平行四边形,又点C的纵坐标为-1,点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2点P的坐标为(+2,1)或(-+2,1),当点P(-1,0)时,也满足条件综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键20、C点到地面AD的距离为:(2+2)m【解析】直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案【详解】过点B作BEAD于E,作BFAD,过C作CFBF于F,在RtABE中,A=30°,AB=4m,BE=2m,由题意可得:BFAD,则FBA=A=30°,在RtCBF中,ABC=75°,CBF=45°,BC=4m,CF=sin45°BC= C点到地面AD的距离为:【点睛】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.21、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:30÷50%=60(人);扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60153010=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.22、 (1) k的值为3,m的值为1;(2)0<n1或n3.【解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值(2)当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;由题意可知:P的坐标为(n,n),由于PNPM,从而可知PN2,根据图象可求出n的范围详解:(1)将A(3,m)代入y=x-2,m=3-2=1,A(3,1),将A(3,1)代入y=,k=3×1=3,m的值为1.(2)当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,x=3,M(3,1),PM=2,令x=1代入y=,y=3, N(1,3),PN=2PM=PN,P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),PM=2,PNPM,即PN2,0n1或n3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型23、(1)140;(2)W内x2130x,W外x2 (150a)x;(3)a1【解析】试题分析:(1)将x=1000代入函数关系式求得y,;(2)根据等量关系“利润=销售额成本”“利润=销售额成本附加费”列出函数关系式;(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值试题解析:(1)x=1000,y=×1000+150=140;(2)W内(y1)x(x1501)xx2130x W外(150a)xx2x2(150a)x;(3)W内x2130x=(x6500)2+2,由W外x2(150a)x得:W外最大值为:(7505a)2,所以:(7505a)22解得a280或a1经检验,a280不合题意,舍去,a1考点:二次函数的应用24、450m.【解析】若要使A、C、E三点共线,则三角形BDE是以E为直角的三角形,利用三角函数即可解得DE的长【详解】解:,在中,答:另一边开挖点离,正好使,三点在一直线上【点睛】本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30°的直角三角形的性质.25、(1)B(1,1);(2)y=(xn)2+2n(3)a=;a=+1.【解析】1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。(2) 根据两种不同的表示形式得到m和h之间的函数关系即可。点C作y轴的垂线, 垂足为E, 过点D作DFCE于点F, 证得ACECDF, 然后用m表示出点C和点D的坐标, 根据相似三角形的性质求得m的值即可。【详解】解:(1)当x=0时候,y=x+2=2,A(0,2),把A(0,2)代入y=(x1)2+m,得1+m=2m=1y=(x1)2+1,B(1,1)(2)由(1)知,该抛物线的解析式为:y=(x1)2+1,D(n,2n),则平移后抛物线的解析式为:y=(xn)2+2n故答案是:y=(xn)2+2n(3)C是两个抛物线的交点,点C的纵坐标可以表示为:(a1)2+1或(an)2n+2由题意得(a1)2+1=(an)2n+2,整理得2an2a=n2nn1a=过点C作y轴的垂线,垂足为E,过点D作DFCE于点FACD=90°,ACE=CDF又AEC=DFCACECDF=又C(a,a22a+2),D(2a,22a),AE=a22a,DF=m2,CE=CF=a=a22a=1解得:a=±+1n1a=a=+1【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。26、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人【解析】【分析】根据等级A的人数及所占百分比即可得出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;总人数课外阅读时间满足的百分比即得所求【详解】由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的,所以:人,即本次调查的学生人数为200人;由条形图知:C级的人数为60人,所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人,D级的人数为:人,B所在扇形的圆心角为:,补全条形图如图所示:;因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人,答:全校每周课外阅读时间满足的约有360人【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比27、-1【解析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得【详解】原式=14+1=1【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.