安徽省巢湖第四中学2022-2023学年中考数学五模试卷含解析.doc
-
资源ID:88000211
资源大小:667KB
全文页数:14页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
安徽省巢湖第四中学2022-2023学年中考数学五模试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( ) (A)33 (B)34 (C)35 (D)362下列图形中,既是中心对称图形又是轴对称图形的是()A正五边形 B平行四边形 C矩形 D等边三角形3运用乘法公式计算(3a)(a+3)的结果是()Aa26a+9Ba29C9a2Da23a+94两个一次函数,它们在同一直角坐标系中的图象大致是( )ABCD5如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为()ABCD6|3|()ABC3D37小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()ABCD8一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )ABCD9不等式组的解集在数轴上可表示为()ABCD10一次函数y=2x+1的图像不经过 ( )A第一象限 B第二象限 C第三象限 D第四象限二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式_12解不等式组 请结合题意填空,完成本题的解答(1)解不等式,得_;(2)解不等式,得_;(3)把不等式和的解集在数轴上表示出来;(4)原不等式组的解集为_13分解因:=_14小青在八年级上学期的数学成绩如下表所示平时测验期中考试期末考试成绩869081如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_分15从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是_16据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为_三、解答题(共8题,共72分)17(8分)先化简,再求值:(x+1y)1(1y+x)(1yx)1x1,其中x+1,y118(8分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上(I)AC的长等于_(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分ABC的面积请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_(不要求证明)19(8分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3)(1)求抛物线L的顶点坐标和A点坐标(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m0)是抛物线L2上的一点,是否存在点P,使得PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由20(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为_米21(8分)如图,ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)画出ABC关于y轴的对称图形A1B1C1,并写出B1点的坐标;(2)画出ABC绕原点O旋转180°后得到的图形A2B2C2,并写出B2点的坐标;(3)在x轴上求作一点P,使PAB的周长最小,并直接写出点P的坐标22(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.23(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24如图,已知ABC中,AB=BC=5,tanABC=求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:过点E作EMOA,垂足为M,A(1,0),B(0,2),OA-1,OB=2,又AOB=90°,AB=,AB/CD,ABO=CBG,BCG=90°,BCGAOB,BC=AB=,CG=2,CD=AD=AB=,DG=3,DE=DG=3,AE=4,BAD=90°,EAM+BAO=90°,BAO+ABO=90°,EAM=ABO,又EMA=90°,EAMABO,即,AM=8,EM=4,AM=9,E(9,4),k=4×9=36;故选D考点:反比例函数综合题2、C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.3、C【解析】根据平方差公式计算可得【详解】解:(3a)(a+3)32a29a2,故选C【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的平方减去相反项的平方4、B【解析】根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a、b异号,所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,B选项符合,D选项,a、b都经过第二、四象限,所以,两直线都与y轴负半轴相交,不符合故选:B【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k0),k0时,一次函数图象经过第一三象限,k0时,一次函数图象经过第二四象限,b0时与y轴正半轴相交,b0时与y轴负半轴相交5、C【解析】由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,按此规律,第n个图形中面积为1的正方形有2+3+4+n+1=.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,按此规律,第n个图形中面积为1的正方形有2+3+4+(n+1)= 个.【点睛】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.6、C【解析】根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.7、D【解析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),他的爸爸妈妈相邻的概率是:,故选D8、A【解析】让黄球的个数除以球的总个数即为所求的概率【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是故选:A【点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比9、A【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解: 不等式得:x1,解不等式得:x2,不等式组的解集为1x2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.10、D【解析】根据一次函数的系数判断出函数图象所经过的象限,由k=20,b=10可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】k=20,b=10,根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.二、填空题(本大题共6个小题,每小题3分,共18分)11、(x+y+z)(xyz)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解本题后三项可以为一组组成完全平方式,再用平方差公式即可【详解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z)故答案为(x+y+z)(x-y-z)【点睛】本题考查了用分组分解法进行因式分解难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三项分为一组12、(1)x1;(2)x2;(1)见解析;(4)2x1;【解析】(1)先移项,再合并同类项,求出不等式1的解集即可;(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;(1)把两不等式的解集在数轴上表示出来即可;(4)根据数轴上不等式的解集,求出其公共部分即可.【详解】(1)解不等式,得:x1;(2)解不等式,得:x2;(1)把不等式和的解集在数轴上表示出来如下:(4)原不等式组的解集为:2x1,故答案为:x1、x2、2x1【点睛】本题主要考查一元一次不等式组的解法及在数轴上的表示。13、 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)14、84.2【解析】小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.15、【解析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.16、1.73×1【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将17.3万用科学记数法表示为1.73×1故答案为1.73×1【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.三、解答题(共8题,共72分)17、2【解析】【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.【详解】原式=x1+2xy+2y1(2y1x1)1x1=x1+2xy+2y12y1+x11x1=2xy,当x=+1,y=1时,原式=2×(+1)×(1)=2×(32)=2【点睛】本题考查了整式的混合运算化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.18、 作abcd,可得交点P与P 【解析】(1)根据勾股定理计算即可;(2)利用平行线等分线段定理即可解决问题.【详解】(I)AC=,故答案为:;(II)如图直线l1,直线l2即为所求;理由:abcd,且a与b,b与c,c与d之间的距离相等,CP=PP=PA,SBCP=SABP=SABC故答案为作abcd,可得交点P与P【点睛】本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型19、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x2-x+3, ,y=x2-4x+3, .【解析】(1)将点B和点C代入求出抛物线L即可求解.(2)将抛物线L化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.【详解】(1)将点B(-3,0),C(0,3)代入抛物线得:,解得,则抛物线.抛物线与x轴交于点A, ,A (-1,0),抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).(2)抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1)抛物线L1的顶点与抛物线L的顶点关于原点对称,对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得PAC为等腰直角三角形,作出所有点P的可能性.是等腰直角三角形,求得.,同理得,由题意知抛物线并将点代入得:.【点睛】本题主要考查抛物线综合题,讨论出P点的所有可能性是解题关键.20、10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用21、(1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A,连接AB与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可试题解析:(1)、A1B1C1如图所示;B1点的坐标(-4,2) (2)、A2B2C2如图所示;B2点的坐标:(-4,-2) (3)、PAB如图所示,P(2,0)考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换22、(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的面积为:=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.23、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案【解析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,x=15,经检验x=15是原方程的解40x=1甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,解得20y2因为y是整数,甲种玩具的件数少于乙种玩具的件数,y取20,21,22,23,共有4种方案考点:分式方程的应用;一元一次不等式组的应用24、(1)AC=;(2)【解析】【分析】(1)过A作AEBC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求【详解】(1)如图,过点A作AEBC,在RtABE中,tanABC=,AB=5,AE=3,BE=4,CE=BCBE=54=1,在RtAEC中,根据勾股定理得:AC=;(2)DF垂直平分BC,BD=CD,BF=CF=,tanDBF=,DF=,在RtBFD中,根据勾股定理得:BD=,AD=5=,则【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.