山东省威海市荣成第十四中学2023年中考四模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方下列结论:;其中正确结论的个数是( )个A4个B3个C2个D1个23的倒数是( )ABCD3如图所示是由几个完全相同的小正方体组成的几何体的三视图若小正方体的体积是1,则这个几何体的体积为()A2B3C4D54如图,四边形ABCD中,ACBC,ADBC,BC3,AC4,AD1M是BD的中点,则CM的长为()AB2CD35下列命题中,真命题是( )A对角线互相垂直且相等的四边形是正方形B等腰梯形既是轴对称图形又是中心对称图形C圆的切线垂直于经过切点的半径D垂直于同一直线的两条直线互相垂直6一个圆锥的侧面积是12,它的底面半径是3,则它的母线长等于()A2 B3 C4 D67一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1关于这组数据说法错误的是()A极差是20B中位数是91C众数是1D平均数是918如图,已知点E在正方形ABCD内,满足AEB=90°,AE=6,BE=8,则阴影部分的面积是()A48B60C76D809下列计算正确的是( )A B C D10如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24B18C12D911下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D10912某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为_.14如图,在ABC和EDB中,CEBD90°,点E在AB上若ABCEDB,AC4,BC3,则AE_15如图,中,的面积为,为边上一动点(不与,重合),将和分别沿直线,翻折得到和,那么的面积的最小值为_16若关于x的方程x28x+m0有两个相等的实数根,则m_17如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB=15°,ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_m18如图,在ACB中,ACB90°,点D为AB的中点,将ACB绕点C按顺时针方向旋转,当CB经过点D时得到A1CB1若AC6,BC8,则DB1的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,BAC的平分线交ABC的外接圆于点D,交BC于点F,ABC的平分线交AD于点E(1)求证:DEDB:(2)若BAC90°,BD4,求ABC外接圆的半径;(3)若BD6,DF4,求AD的长20(6分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上(1)在图(1)中画出一个等腰ABE,使其面积为3.5;(2)在图(2)中画出一个直角CDF,使其面积为5,并直接写出DF的长21(6分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开因刚搬进新房不久,不熟悉情况若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明22(8分)如图所示,已知一次函数(k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D若OA=OB=OD=1(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式23(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD求证:AB=AF;若AG=AB,BCD=120°,判断四边形ACDF的形状,并证明你的结论24(10分)如图,AB是O的直径,点E是上的一点,DBC=BED求证:BC是O的切线;已知AD=3,CD=2,求BC的长25(10分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1点P是AC上的一个动点,过点P作MNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上)设AP的长为x(0x4),AMN的面积为y建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y0 0(3)观察所画的图象,写出该函数的两条性质: 26(12分)如图,抛物线l:y=(xh)22与x轴交于A,B两点(点A在点B的左侧),将抛物线在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数的图象(1)若点A的坐标为(1,0)求抛物线l的表达式,并直接写出当x为何值时,函数的值y随x的增大而增大;如图2,若过A点的直线交函数的图象于另外两点P,Q,且SABQ=2SABP,求点P的坐标;(2)当2x3时,若函数f的值随x的增大而增大,直接写出h的取值范围27(12分)先化简,其中x参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】分析:根据已知画出图象,把x=2代入得:4a2b+c=0,把x=1代入得:y=ab+c>0,根据不等式的两边都乘以a(a<0)得:c>2a,由4a2b+c=0得而0<c<2,得到即可求出2ab+1>0.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=2代入得:4a2b+c=0,正确;把x=1代入得:y=ab+c>0,如图A点,错误;(2,0)、(x1,0),且1<x1,取符合条件1<x1<2的任何一个x1,2x1<2,由一元二次方程根与系数的关系知 不等式的两边都乘以a(a<0)得:c>2a, 2a+c>0,正确;由4a2b+c=0得 而0<c<2, 1<2ab<02ab+1>0,正确.所以三项正确故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.2、C【解析】根据倒数的定义可知解:3的倒数是主要考查倒数的定义,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3、C【解析】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析 容易题,失分原因:未掌握通过三视图还原几何体的方法.4、C【解析】延长BC 到E 使BEAD,利用中点的性质得到CM DEAB,再利用勾股定理进行计算即可解答.【详解】解:延长BC 到E 使BEAD,BC/AD,四边形ACED是平行四边形,DE=AB,BC3,AD1,C是BE的中点,M是BD的中点,CM DEAB,ACBC,AB,CM ,故选:C【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.5、C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行故选C6、C【解析】设母线长为R,底面半径是3cm,则底面周长=6,侧面积=3R=12,R=4cm故选C7、D【解析】试题分析:因为极差为:178=20,所以A选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;因为1出现了两次,最多,所以众数是1,所以C选项正确;因为,所以D选项错误.故选D考点:众数中位数平均数极差.8、C【解析】试题解析:AEB=90°,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=102-=100-24=76.故选C.考点:勾股定理.9、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D10、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解【详解】E是AC中点,EFBC,交AB于点F,EF是ABC的中位线,BC=2EF=2×3=6,菱形ABCD的周长是4×6=24,故选A【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.11、C【解析】试题解析:第个图形中一共有3个菱形,3=12+2;第个图形中共有7个菱形,7=22+3;第个图形中共有13个菱形,13=32+4;,第n个图形中菱形的个数为:n2+n+1;第个图形中菱形的个数92+9+1=1故选C考点:图形的变化规律.12、A【解析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可【详解】解:四边形是平行四边形,对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,针头扎在阴影区域内的概率为;故答案为:【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比14、1【解析】试题分析:在RtACB中,C=90°,AC=4,BC=3,由勾股定理得:AB=5,ABCEDB,BE=AC=4,AE=54=1.考点:全等三角形的性质;勾股定理15、4.【解析】过E作EGAF,交FA的延长线于G,由折叠可得EAG30°,而当ADBC时,AD最短,依据BC7,ABC的面积为14,即可得到当ADBC时,AD4AEAF,进而得到AEF的面积最小值为:AF×EG×4×24.【详解】解:如图,过E作EGAF,交FA的延长线于G,由折叠可得,AFAEAD,BAEBAD,DACFAC,BAC75°,EAF150°,EAG30°,EGAEAD,当ADBC时,AD最短,BC7,ABC的面积为14,当ADBC时, 即:,.AEF的面积最小值为:AF×EG×4×24,故答案为:4.【点睛】本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等16、1【解析】根据判别式的意义得到(8)24m0,然后解关于m的方程即可【详解】(8)24m0,解得m1,故答案为:1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c0(a0)的根与b24ac有如下关系:当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当0时,方程无实数根17、(50)【解析】过点A作AMDC于点M,过点B作BNDC于点N则AMBN通过解直角ACM和BCN分别求得CM、CN的长度,则易得MNAB【详解】解:如图,过点A作AMDC于点M,过点B作BNDC于点N,则ABMN,AMBN在直角ACM,ACM45°,AM50m,CMAM50m在直角BCN中,BCNACBACD60°,BN50m,CN(m),MNCMCN50(m)则ABMN(50)m故答案是:(50)【点睛】本题考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题18、2【解析】根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.【详解】在ACB中,ACB90°,AC6,BC8, 点D为AB的中点, ,将ACB绕点C按顺时针方向旋转,当CB经过点D时得到A1CB1CB1BC8,DB1CB1-CD=852, 故答案为:2【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB的长是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)2 (3)1【解析】(1)通过证明BED=DBE得到DB=DE;(2)连接CD,如图,证明DBC为等腰直角三角形得到BC=BD=4,从而得到ABC外接圆的半径;(3)证明DBFADB,然后利用相似比求AD的长【详解】(1)证明:AD平分BAC,BE平分ABD,1=2,3=4,BED=1+3=2+4=5+4=DBE,DB=DE;(2)解:连接CD,如图,BAC=10°,BC为直径,BDC=10°,1=2,DB=BC,DBC为等腰直角三角形,BC=BD=4,ABC外接圆的半径为2;(3)解:5=2=1,FDB=BDA,DBFADB,=,即=,AD=1【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了圆周角定理和相似三角形的判定与性质20、 (1)见解析;(2)DF 【解析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案【详解】(1)如图(1)所示:ABE,即为所求;(2)如图(2)所示:CDF即为所求,DF=【点睛】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键21、(1);(2).【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,正好客厅灯和走廊灯同时亮的概率是=.考点:概率的计算.22、(1)A(1,0),B(0,1),D(1,0)(2)一次函数的解析式为 反比例函数的解析式为【解析】解:(1)OA=OB=OD=1,点A、B、D的坐标分别为A(1,0),B(0,1),D(1,0)。(2)点A、B在一次函数(k0)的图象上,解得。一次函数的解析式为。点C在一次函数y=x+1的图象上,且CDx轴,点C的坐标为(1,2)。又点C在反比例函数(m0)的图象上,m=1×2=2。反比例函数的解析式为。(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。23、(1)证明见解析;(2)结论:四边形ACDF是矩形理由见解析.【解析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:四边形ABCD是平行四边形,BECD,AB=CD,AFC=DCG,GA=GD,AGF=CGD,AGFDGC,AF=CD,AB=CF(2)解:结论:四边形ACDF是矩形理由:AF=CD,AFCD,四边形ACDF是平行四边形,四边形ABCD是平行四边形,BAD=BCD=120°,FAG=60°,AB=AG=AF,AFG是等边三角形,AG=GF,AGFDGC,FG=CG,AG=GD,AD=CF,四边形ACDF是矩形【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.24、 (1)证明见解析(2)BC=【解析】(1)AB是O的直径,得ADB=90°,从而得出BAD=DBC,即ABC=90°,即可证明BC是O的切线;(2)可证明ABCBDC,则,即可得出BC=【详解】(1)AB是O的切直径,ADB=90°,又BAD=BED,BED=DBC,BAD=DBC,BAD+ABD=DBC+ABD=90°,ABC=90°,BC是O的切线;(2)解:BAD=DBC,C=C,ABCBDC,即BC2=ACCD=(AD+CD)CD=10,BC=考点:1.切线的判定;2.相似三角形的判定和性质.25、 (1) y=;(1)见解析;(3)见解析【解析】(1)根据线段相似的关系得出函数关系式(1)代入中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x当0x1时MNBDAPMAODMP=AC垂直平分MNPN=PM=xMN=xy=APMN=当1x4时,P在线段OC上,CP=4xCPMCODPM=MN=1PM=4xy=y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0x1时,y随x的增大而增大1、当1x4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.26、(1)当1x3或x5时,函数的值y随x的增大而增大,P(,);(2)当3h4或h0时,函数f的值随x的增大而增大.【解析】试题分析:(1)利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数的值y随x的增大而增大(即呈上升趋势)的x的取值;如图2,作辅助线,构建对称点F和直角角三角形AQE,根据SABQ=2SABP,得QE=2PD,证明PADQAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值试题解析:(1)把A(1,0)代入抛物线y=(xh)22中得:(xh)22=0,解得:h=3或h=1,点A在点B的左侧,h0,h=3,抛物线l的表达式为:y=(x3)22,抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1x3或x5时,函数的值y随x的增大而增大;如图2,作PDx轴于点D,延长PD交抛物线l于点F,作QEx轴于E,则PDQE,由对称性得:DF=PD,SABQ=2SABP,ABQE=2×ABPD,QE=2PD,PDQE,PADQAE,AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,(1+a3)22),点F、Q在抛物线l上,PD=DF=(1+a3)22,QE=(1+2a3)22,(1+2a3)22=2(1+a3)22,解得:a=或a=0(舍),P(,);(2)当y=0时,(xh)22=0,解得:x=h+2或h2,点A在点B的左侧,且h0,A(h2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,3h4,由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+22,h0,综上所述,当3h4或h0时,函数f的值随x的增大而增大考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.27、【解析】根据分式的化简方法先通分再约分,然后带入求值.【详解】解: 当时,【点睛】此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.