山东省临沂沂水县联考2023年中考数学考前最后一卷含解析.doc
-
资源ID:88000658
资源大小:1.05MB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省临沂沂水县联考2023年中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2)B(3,1)C(2,2)D(4,2)2神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )A2.8×103B28×103C2.8×104D0.28×1053甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示下列说法:a=40;甲车维修所用时间为1小时;两车在途中第二次相遇时t的值为5.25;当t=3时,两车相距40千米,其中不正确的个数为()A0个B1个C2个D3个4如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()A个B个C个D个5小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个6如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A5BCD7如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A0.7米B1.5米C2.2米D2.4米8若3x3y,则下列不等式中一定成立的是 ( )ABCD9如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()ABCD10如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD11在数轴上标注了四段范围,如图,则表示的点落在( )A段B段C段D段12如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)二、填空题:(本大题共6个小题,每小题4分,共24分)13已知:正方形 ABCD求作:正方形 ABCD 的外接圆 作法:如图,(1)分别连接 AC,BD,交于点 O;(2)以点 O 为圆心,OA 长为半径作O,O 即为所求作的圆请回答:该作图的依据是_14从,0,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是_15如图,ABC中,AD是中线,AE是角平分线,CFAE于F,AB=10,AC=6,则DF的长为_16已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是_cm2.17如图,在菱形纸片中,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为_18已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_厘米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲50乙60(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?20(6分)如图,在ABC中,点D、E分别在边AB、AC上,DEBC,且DE=BC如果AC=6,求AE的长;设,求向量(用向量、表示)21(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)22(8分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠(1)若顾客选择方式一,则享受优惠的概率为 ;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率23(8分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元设在同一家复印店一次复印文件的页数为x(x为非负整数)(1)根据题意,填写下表:一次复印页数(页)5102030甲复印店收费(元)0.5 2 乙复印店收费(元)0.6 2.4 (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x70时,顾客在哪家复印店复印花费少?请说明理由24(10分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的问该兴趣小组男生、女生各有多少人?25(10分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是 人;(2)图2中是 度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率26(12分)已知,抛物线(为常数)(1)抛物线的顶点坐标为( , )(用含的代数式表示);(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 27(12分)如图,RtABC中,C=90°,O是RtABC的外接圆,过点C作O的切线交BA的延长线于点E,BDCE于点D,连接DO交BC于点M.(1)求证:BC平分DBA;(2)若,求的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=6,AD=BC=2,ADBG,OADOBG,=,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选A2、C【解析】试题分析:28000=1.1×1故选C考点:科学记数法表示较大的数3、A【解析】解:由函数图象,得a=120÷3=40,故正确,由题意,得5.53120÷(40×2),=2.51.5,=1甲车维修的时间为1小时;故正确,如图:甲车维修的时间是1小时,B(4,120)乙在甲出发2小时后匀速前往B地,比甲早30分钟到达E(5,240)乙行驶的速度为:240÷3=80,乙返回的时间为:240÷80=3,F(8,0)设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,解得,y1=80t200,y2=80t+640,当y1=y2时,80t200=80t+640,t=5.2两车在途中第二次相遇时t的值为5.2小时,故弄正确,当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(32)=80km,两车相距的路程为:12080=40千米,故正确,故选A4、D【解析】求出不等式组的解集,根据已知求出12、34,求出2a4、9b12,即可得出答案【详解】解不等式2xa0,得:x,解不等式3xb0,得:x,不等式组的整数解仅有x2、x3,则12、34,解得:2a4、9b12,则a3时,b9、10、11;当a4时,b9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值5、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一6、C【解析】先利用勾股定理求出AC的长,然后证明AEOACD,根据相似三角形对应边成比例列式求解即可【详解】AB=6,BC=8,AC=10(勾股定理);AO=AC=5,EOAC,AOE=ADC=90°,EAO=CAD,AEOACD,即 ,解得,AE=,DE=8=,故选:C【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键7、C【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90°,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选C【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.8、A【解析】两边都除以3,得xy,两边都加y,得:x+y0,故选A9、C【解析】看到的棱用实线体现.故选C.10、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图11、C【解析】试题分析:121=232;131=319;15=344;191=45 344445,154191,1419,所以应在段上故选C考点:实数与数轴的关系12、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆【解析】利用正方形的性质得到 OA=OB=OC=OD,则以点O为圆心,OA长为半径作O,点B、C、D都在O 上,从而得到O 为正方形的外接圆【详解】四边形 ABCD 为正方形,OA=OB=OC=OD,O 为正方形的外接圆故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作14、【解析】分析:由题意可知,从,0,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:从,0,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,抽到有理数的概率是:故答案为点睛:知道“从,0,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.15、1【解析】试题分析:如图,延长CF交AB于点G,在AFG和AFC中,GAF=CAF,AF=AF,AFG=AFC,AFGAFC(ASA)AC=AG,GF=CF又点D是BC中点,DF是CBG的中位线DF=BG=(ABAG)=(ABAC)=116、15【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,r=3,h=4, 母线l=,S侧=×2r×5=×2×3×5=15,故答案为15.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17、【解析】过点作,交延长线于,连接,交于,根据折叠的性质可得,根据同角的余角相等可得,可得,由平行线的性质可得,根据的三角函数值可求出、的长,根据为中点即可求出的长,根据余弦的定义的值即可得答案.【详解】过点作,交延长线于,连接,交于,四边形是菱形,将菱形纸片翻折,使点落在的中点处,折痕为,为中点,.故答案为【点睛】本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.18、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可【详解】解:两圆的半径分别为2和5,两圆内切,dRr521cm,故答案为1【点睛】此题考查了圆与圆的位置关系解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)10750;(2);(3)最大利润为10750元.【解析】(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:0<m<200;200m400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【详解】(1)甲种T恤进货250件乙种T恤进货量为:400-250=150件故由题意得,;(2);故.(3)由题意,综上,最大利润为10750元.【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键20、(1)1;(2).【解析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答【详解】(1)如图,DEBC,且DE=BC,又AC=6,AE=1(2),又DEBC,DE=BC,【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义21、(1)袋子中白球有2个;(2)见解析, .【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案【详解】解:(1)设袋子中白球有x个,根据题意得:,解得:x2,经检验,x2是原分式方程的解,袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:【点睛】此题考查了列表法或树状图法求概率注意掌握方程思想的应用注意概率=所求情况数与总情况数之比22、(1);(2)【解析】(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;(2)根据题意可以画出相应的树状图,从而可以求得相应的概率【详解】解:(1)由题意可得,顾客选择方式一,则享受优惠的概率为:,故答案为:;(2)树状图如下图所示,则顾客享受折上折优惠的概率是:,即顾客享受折上折优惠的概率是【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率23、(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.【解析】(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;(3)设y=y1-y2,得到y与x的函数关系,根据y与x的函数关系式即可作出判断【详解】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x0);y2=;(3)顾客在乙复印店复印花费少;当x70时,y1=0.1x,y2=0.09x+0.6,设y=y1y2,y1y2=0.1x(0.09x+0.6)=0.01x0.6,设y=0.01x0.6,由0.010,则y随x的增大而增大,当x=70时,y=0.1x70时,y0.1,y1y2,当x70时,顾客在乙复印店复印花费少【点睛】本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键24、男生有12人,女生有21人.【解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×=男生的人数 ,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:,解得:答:该兴趣小组男生有12人,女生有21人【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.25、(1)40;(2)54,补图见解析;(3)330;(4).【解析】(1)根据由自主学习的时间是1小时的人数占30%,可求得本次调查的学生人数;(2),由自主学习的时间是0.5小时的人数为40×35%=14;(3)求出这40名学生自主学习时间不少于1.5小时的百分比乘以600即可;(4)根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案【详解】(1)自主学习的时间是1小时的有12人,占30%,12÷30%=40,故答案为40; (2),故答案为54;自主学习的时间是0.5小时的人数为40×35%=14;补充图形如图: (3)600×=330; 故答案为330;(4)画树状图得:共有12种等可能的结果,选中小亮A的有6种可能,P(A)=26、(1);(2)图象见解析,或;(3)【解析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求【详解】解:(1),抛物线的顶点的坐标为故答案为:(2)将代入抛物线的解析式得:解得:,抛物线的解析式为抛物线的大致图象如图所示:将代入得:,解得:或抛物线与反比例函数图象的交点坐标为或将代入得:,将代入得:,综上所述,反比例函数的表达式为或(3)设点的坐标为,则点的坐标为,的坐标为的长随的增大而减小矩形在其对称轴的左侧,抛物线的对称轴为, 当时,的长有最小值,的最小值的长度不变,当最小时,有最小值的最小值故答案为:【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键27、 (1)证明见解析;(2) 【解析】分析:(1)如下图,连接OC,由已知易得OCDE,结合BDDE可得OCBD,从而可得1=2,结合由OB=OC所得的1=3,即可得到2=3,从而可得BC平分DBA;(2)由OCBD可得EBDEOC和DBMOCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.详解:(1)证明:连结OC,DE与O相切于点C,OCDE.BDDE,OCBD. . 1=2,OB=OC,1=3,2=3,即BC平分DBA. . (2)OCBD,EBDEOC,DBMOCM,. ,设EA=2k,AO=3k,OC=OA=OB=3k.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OCDE结合BDDE得到OCBD是解答第1小题的关键;(2)解答第2小题的关键是由OCBD得到EBDEOC和DBMOCM这样利用相似三角形的性质结合已知条件即可求得所求值了.