山东省枣庄市薛城区临城2023届中考数学押题试卷含解析.doc
-
资源ID:88000667
资源大小:995.50KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省枣庄市薛城区临城2023届中考数学押题试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABCD,那么()ABAD与B互补B1=2CBAD与D互补DBCD与D互补2不等式组的解集是 ()Ax1Bx3C1x3Dx33直线AB、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定4对于实数x,我们规定表示不大于x的最大整数,例如,若,则x的取值可以是( )A40B45C51D565如图的几何体中,主视图是中心对称图形的是()ABCD6在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A27B51C69D727在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )Ak1Bk0Ck1Dk18在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手12345678910时间(min)129136140145146148154158165175由此所得的以下推断不正确的是( )A这组样本数据的平均数超过130B这组样本数据的中位数是147C在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好9利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()ABCD10如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD11函数yax+b与ybx+a的图象在同一坐标系内的大致位置是()ABCD12将一副直角三角尺如图放置,若AOD=20°,则BOC的大小为( )A140°B160°C170°D150°二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式: _14肥皂泡的泡壁厚度大约是,用科学记数法表示为 _15分解因式_16化简: =_17阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQl于点Q”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧(2)在直线l上任取点B,以B为圆心,BP长为半径画弧(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求老师表扬了小艾的作法是对的请回答:小艾这样作图的依据是_18已知梯形ABCD,ADBC,BC=2AD,如果,那么=_(用、 表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知关于的一元二次方程.试证明:无论取何值此方程总有两个实数根;若原方程的两根,满足,求的值.20(6分)问题探究(1)如图1,ABC和DEC均为等腰直角三角形,且BAC=CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;(2)如图2,在RtABC中,ACB=90°,B=30°,BC=4,过点A作AMAB,点P是射线AM上一动点,连接CP,做CQCP交线段AB于点Q,连接PQ,求PQ的最小值;(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,BAD=135°,ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值图321(6分)计算:-2-2 - + 022(8分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°0.60,cos 37°0.80,tan 37°0.75)23(8分)如图,在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CFBC,求证:四边形OCFE是平行四边形24(10分)已知关于x的一元二次方程kx26x+10有两个不相等的实数根(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根25(10分)如图,在中,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径(1)求证:是的切线;(2)当,时,求的半径26(12分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是_(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数_(3)请估计全校共征集作品的件数(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率27(12分)如图,已知ABCD的面积为S,点P、Q时是ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论:“E是BC中点” .乙得到结论:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分清截线和被截线,根据平行线的性质进行解答即可【详解】解:ABCD,BAD与D互补,即C选项符合题意;当ADBC时,BAD与B互补,1=2,BCD与D互补,故选项A、B、D都不合题意,故选:C【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键2、B【解析】根据解不等式组的方法可以求得原不等式组的解集【详解】,解不等式,得x-1,解不等式,得x1,由可得,x1,故原不等式组的解集是x1故选B【点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法3、A【解析】根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AOD,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答4、C【解析】解:根据定义,得解得:故选C5、C【解析】解:球是主视图是圆,圆是中心对称图形,故选C6、D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1列出三个数的和的方程,再根据选项解出x,看是否存在解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2故任意圈出一竖列上相邻的三个数的和不可能是3故选D“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解7、A【解析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k10,解可得k的取值范围【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k10,解得k1故选A【点评】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大8、C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位9、A【解析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.10、B【解析】先利用三角函数求出BAE=45°,则BE=AB=,DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45°,BE=AB=,BEA=45°ADBC,DAE=BEA=45°,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2×××=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积11、B【解析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案【详解】分四种情况:当a0,b0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;当a0,b0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合故选B【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:当k0,b0,函数y=kx+b的图象经过第一、二、三象限;当k0,b0,函数y=kx+b的图象经过第一、三、四象限;当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;当k0,b0时,函数y=kx+b的图象经过第二、三、四象限12、B【解析】试题分析:根据AOD=20°可得:AOC=70°,根据题意可得:BOC=AOB+AOC=90°+70°=160°.考点:角度的计算二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解:.考点:因式分解14、7×10-1【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.0007=7×10-1故答案为:7×10-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定15、【解析】原式提取公因式,再利用完全平方公式分解即可【详解】原式2x(y22y1)2x(y1)2,故答案为2x(y1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键16、【解析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可【详解】原式,故答案为【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键17、到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一【解析】从作图方法以及作图结果入手考虑其作图依据.【详解】解:依题意,APAM,BPBM,根据垂直平分线的定义可知PM直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.18、【解析】根据向量的三角形法则表示出,再根据BC、AD的关系解答【详解】如图,=-=-,ADBC,BC=2AD,=(-)=-故答案为-【点睛】本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出=(2p+1)21,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)21,无论p取何值此方程总有两个实数根;(2)原方程的两根为x1、x2,x1+x2=5,x1x2=6-p2-p又x12+x22-x1x2=3p2+1,(x1+x2)2-3x1x2=3p2+1,52-3(6-p2-p)=3p2+1,25-18+3p2+3p=3p2+1,3p=-6,p=-2点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值20、(1);(2);(3)+.【解析】(1)由等腰直角三角形的性质可得BC=3,CE=,ACB=DCE=45°,可证ACDBCE,可得;(2)由题意可证点A,点Q,点C,点P四点共圆,可得QAC=QPC,可证ABCPQC,可得,可得当QCAB时,PQ的值最小,即可求PQ的最小值;(3)作DCE=ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证ABCDEC,可得,且BCE=ACD,可证BCEACD,可得BEC=ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值【详解】(1)BAC=CDE=90°,AB=AC=3,DE=CD=1,BC=3,CE=,ACB=DCE=45°,BCE=ACD,BCE=ACD,ACDBCE,;(2)ACB=90°,B=30°,BC=4,AC=,AB=2AC=,QAP=QCP=90°,点A,点Q,点C,点P四点共圆,QAC=QPC,且ACB=QCP=90°,ABCPQC,PQ=×QC=QC,当QC的长度最小时,PQ的长度最小,即当QCAB时,PQ的值最小,此时QC=2,PQ的最小值为;(3)如图,作DCE=ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,ADC=90°,AD=CD,CAD=45°,BAC=BAD-CAD=90°,ABCDEC,DCE=ACB,BCE=ACD,BCEACD,BEC=ADC=90°,CE=BC=2,点F是EC中点,DF=EF=CE=,BF=,BDDF+BF=+【点睛】本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键21、【解析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案【详解】解:原式=【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.22、35km【解析】试题分析:如图作CHAD于H设CH=xkm,在RtACH中,可得AH=,在RtCEH中,可得CH=EH=x,由CHBD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题试题解析:如图,作CHAD于H设CH=xkm,在RtACH中,A=37°,tan37°=,AH=,在RtCEH中,CEH=45°,CH=EH=x,CHAD,BDAD,CHBD,AC=CB,AH=HD,=x+5,x=15,AE=AH+HE=+1535km,E处距离港口A有35km23、证明见解析.【解析】利用三角形中位线定理判定OEBC,且OE=BC结合已知条件CF=BC,则OE/CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论【详解】四边形ABCD是平行四边形,点O是BD的中点又点E是边CD的中点,OE是BCD的中位线,OEBC,且OE=BC又CF=BC,OE=CF又点F在BC的延长线上,OECF,四边形OCFE是平行四边形【点睛】本题考查了平行四边形的性质和三角形中位线定理此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理熟记相关定理并能应用是解题的关键.24、(1)(2) , 【解析】【分析】(1)根据一元二次方程的定义可知k0,再根据方程有两个不相等的实数根,可知>0,从而可得关于k的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.【详解】(1) 依题意,得,解得且;(2) 是小于9的最大整数,此时的方程为,解得,. 【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.25、(1)见解析;(2)的半径是.【解析】(1)连结,易证,由于是边上的高线,从而可知,所以是的切线(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.【详解】解:(1)连结平分,又,是边上的高线,是的切线.(2),是中点,又,在中,而,的半径是.【点睛】本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力26、(1)抽样调查(2)150°(3)180件(4) 【解析】分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查故答案为抽样调查(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为150°;(3)平均每个班=6件,估计全校共征集作品6×30=180件(4)画树状图得:共有20种等可能的结果,两名学生性别相同的有8种情况,恰好选取的两名学生性别相同的概率为点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=,求出P(A)27、结论一正确,理由见解析;结论二正确,S四QEFP= S【解析】试题分析:(1)由已知条件易得BEQDAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论成立;(2)同(1)易证点F是CD的中点,由此可得EFBD,EF=BD,从而可得CEFCBD,则可得得到SCEF=SCBD=S平行四边形ABCD=S,结合S四边形AECF=S可得SAEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合AQPAEF可得SAQP=SAEF=,由此可得S四边形QEFP= SAEF- SAQP=S,从而说明乙的结论正确;试题解析:甲和乙的结论都成立,理由如下:(1)在平行四边形ABCD中,ADBC,BEQDAQ,又点P、Q是线段BD的三等分点,BE:AD=BQ:DQ=1:2,AD=BC,BE:BC=1:2,点E是BC的中点,即结论正确;(2)和(1)同理可得点F是CD的中点,EFBD,EF=BD,CEFCBD,SCEF=SCBD=S平行四边形ABCD=S,S四边形AECF=SACE+SACF=S平行四边形ABCD=S,SAEF=S四边形AECF-SCEF=S,EFBD, AQPAEF,又EF=BD,PQ=BD,QP:EF=2:3,SAQP=SAEF=,S四边形QEFP= SAEF- SAQP=S-=S,即结论正确.综上所述,甲、乙两位同学的结论都正确.