山东省枣庄市薛城舜耕中学2023届高考全国统考预测密卷数学试卷含解析.doc
-
资源ID:88000672
资源大小:2.24MB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省枣庄市薛城舜耕中学2023届高考全国统考预测密卷数学试卷含解析.doc
2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。12019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( )A18种B20种C22种D24种2已知向量,则向量在向量上的投影是( )ABCD3 “一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是20152019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )A这五年,出口总额之和比进口总额之和大B这五年,2015年出口额最少C这五年,2019年进口增速最快D这五年,出口增速前四年逐年下降4若某几何体的三视图如图所示,则该几何体的表面积为( )A240B264C274D2825某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则( )ABCD6已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()ABCD7已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为ABC2D8已知的展开式中的常数项为8,则实数( )A2B-2C-3D39已知函数是上的偶函数,是的奇函数,且,则的值为( )ABCD10我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( )A400米B480米C520米D600米11已知正项等比数列的前项和为,且,则公比的值为()AB或CD12函数的大致图像为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13四面体中,底面,则四面体的外接球的表面积为_14已知中,点是边的中点,的面积为,则线段的取值范围是_.15若函数为自然对数的底数)在和两处取得极值,且,则实数的取值范围是_16若函数在和上均单调递增,则实数的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.18(12分)如图1,四边形为直角梯形,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面;(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.19(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:加工1个零件用时(分钟)20253035频数(个)15304015以加工这100个零件用时的频率代替概率.(1)求的分布列与数学期望;(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.20(12分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90°,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值21(12分)已知函数(1)若,求的取值范围;(2)若,对,不等式恒成立,求的取值范围22(10分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分两类:一类是医院A只分配1人,另一类是医院A分配2人,分别计算出两类的分配种数,再由加法原理即可得到答案.【详解】根据医院A的情况分两类:第一类:若医院A只分配1人,则乙必在医院B,当医院B只有1人,则共有种不同分配方案,当医院B有2人,则共有种不同分配方案,所以当医院A只分配1人时,共有种不同分配方案;第二类:若医院A分配2人,当乙在医院A时,共有种不同分配方案,当乙不在A医院,在B医院时,共有种不同分配方案,所以当医院A分配2人时,共有种不同分配方案;共有20种不同分配方案.故选:B【点睛】本题考查排列与组合的综合应用,在做此类题时,要做到分类不重不漏,考查学生分类讨论的思想,是一道中档题.2、A【解析】先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.3、D【解析】根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.4、B【解析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题5、D【解析】如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.6、C【解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论【详解】设分别是的中点平面 是等边三角形 又平面 为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为 球的半径平面 本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题7、B【解析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.8、A【解析】先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.9、B【解析】根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,而函数是上的偶函数,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.10、B【解析】根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.11、C【解析】由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3) 为等比数列( )且公比为.12、D【解析】通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,排除B和C;当时,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求【详解】解:如图,在四面体中,底面,可得,补形为长方体,则过一个顶点的三条棱长分别为1,1,则长方体的对角线长为,则三棱锥的外接球的半径为1其表面积为故答案为:【点睛】本题考查多面体外接球表面积的求法,补形是关键,属于中档题14、【解析】设,利用正弦定理,根据,得到,再利用余弦定理得,平方相加得:,转化为 有解问题求解.【详解】设,所以, 即由余弦定理得,即 ,平方相加得:,即 ,令,设 ,在上有解,所以 ,解得,即 ,故答案为:【点睛】本题主要考查正弦定理和余弦定理在平面几何中的应用,还考查了运算求解的能力,属于难题.15、【解析】先将函数在和两处取得极值,转化为方程有两不等实根,且,再令,将问题转化为直线与曲线有两交点,且横坐标满足,用导数方法研究单调性,作出简图,求出时,的值,进而可得出结果.【详解】因为,所以,又函数在和两处取得极值,所以是方程的两不等实根,且,即有两不等实根,且,令,则直线与曲线有两交点,且交点横坐标满足,又,由得,所以,当时,即函数在上单调递增;当,时,即函数在和上单调递减;当时,由得,此时,因此,由得.故答案为【点睛】本题主要考查导数的应用,已知函数极值点间的关系求参数的问题,通常需要将函数极值点,转化为导函数对应方程的根,再转化为直线与曲线交点的问题来处理,属于常考题型.16、【解析】化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可【详解】由知,当时,在和上单调递增,在和上均单调递增,的取值范围为:故答案为:【点睛】本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)元;(2)32家;(3)分布列见解析;【解析】(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,.,所以的分布列为数学期望【点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.18、(1)证明见解析;(2)存在点是线段的中点,使得直线与平面所成角的正弦值为.【解析】(1)在直角梯形中,根据,得为等边三角形,再由余弦定理求得,满足,得到,再根据平面平面,利用面面垂直的性质定理证明.(2)建立空间直角坐标系:假设在上存在一点使直线与平面所成角的正弦值为,且,求得平面的一个法向量,再利用线面角公式求解.【详解】(1)证明:在直角梯形中,因此为等边三角形,从而,又,由余弦定理得:,即,且折叠后与位置关系不变,又平面平面,且平面平面.平面,平面,平面平面.(2)为等边三角形,为的中点,又平面平面,且平面平面,平面,取的中点,连结,则,从而,以为坐标原点建立如图所示的空间直角坐标系:则,则,假设在上存在一点使直线与平面所成角的正弦值为,且,故,又,该平面的法向量为,令得,解得或(舍),综上可知,存在点是线段的中点,使得直线与平面所成角的正弦值为.【点睛】本题主要考查面面垂直的性质定理和向量法研究线面角问题,还考查了转化化归的思想和运算求解的能力,属于中档题.19、(1)分布列见解析,;(2)0.8575【解析】(1)根据题目所给数据求得分布列,并计算出数学期望.(2)根据对立事件概率计算公式、相互独立事件概率计算公式,计算出刘师傅讲座及加工个零件作示范的总时间不超过分钟的概率.【详解】(1)的分布列如下:202530350.150.300.400.15.(2)设,分别表示讲座前、讲座后加工该零件所需时间,事件表示“留师傅讲座及加工两个零件示范的总时间不超过100分钟”,则.【点睛】本小题主要考查随机变量分布列和数学期望的求法,考查对立事件概率计算,考查相互独立事件概率计算,属于中档题.20、()证明见解析()()【解析】()由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;()求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;()求解平面PBE的一个法向量,计算,即可得二面角DPEB的余弦值【详解】()PC底面ABCD, 如图以点为原点,直线分别为轴,建立空间直角坐标系,则,又,平面PAC,平面PDE,平面PDE平面PAC;()设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;()设为平面PBE的一个法向量,又则,取,得,二面角DPEB的余弦值.【点睛】本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.21、(1);(2).【解析】(1)分类讨论,即可得出结果;(2)先由题意,将问题转化为即可,再求出,的最小值,解不等式即可得出结果.【详解】(1)由得,若,则,显然不成立;若,则,即;若,则,即,显然成立,综上所述,的取值范围是(2)由题意知,要使得不等式恒成立,只需,当时,所以;因为,所以,解得,结合,所以的取值范围是【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记分类讨论的思想、以及绝对值不等式的性质即可,属于常考题型.22、(1)证明见详解;(2)或或【解析】(1)(2)首先用基本不等式得到,然后解出不等式即可【详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:或或【点睛】1.要熟练掌握绝对值的三角不等式,即2.应用基本不等式求最值时要满足“一正二定三相等”.