山东省德州市第五中学2023届中考数学模拟试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )A甲的速度是70米/分B乙的速度是60米/分C甲距离景点2100米D乙距离景点420米2如图,在RtABC中,B90º,AB6,BC8,点D在BC上,以AC为对角线的所有ADCE中,DE的最小值是( )A4B6C8D103如图所示,在平面直角坐标系中,抛物线y=x22x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OPAP的最小值为( ).A3BCD4据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录用科学记数法表示88000为()A0.88×105 B8.8×104 C8.8×105 D8.8×1065如图,点E是矩形ABCD的边AD的中点,且BEAC于点F,则下列结论中错误的是()AAF=CFBDCF=DFCC图中与AEF相似的三角形共有5个DtanCAD=6下列汽车标志中,不是轴对称图形的是( )ABCD7点P(1,2)关于y轴对称的点的坐标是()A(1,2)B(1,2)C(1,2)D(2,1)8在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A中位数不变,方差不变B中位数变大,方差不变C中位数变小,方差变小D中位数不变,方差变小9下列运算结果是无理数的是()A3×BCD10如图,在坐标系中放置一菱形OABC,已知ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,则B2017的坐标为()A(1345,0)B(1345.5,)C(1345,)D(1345.5,0)二、填空题(共7小题,每小题3分,满分21分)11已知:正方形 ABCD求作:正方形 ABCD 的外接圆 作法:如图,(1)分别连接 AC,BD,交于点 O;(2)以点 O 为圆心,OA 长为半径作O,O 即为所求作的圆请回答:该作图的依据是_12在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_13如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E(1)AB的长等于_;(2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_14以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB、CD 分别表示一楼、二楼地面的水平,ABC=150°,BC 的长是 8m,则乘电梯次点 B 到点 C 上升的高度 h 是_m(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_边形15如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_16已知RtABC中,C=90°,AC=3,BC=,CDAB,垂足为点D,以点D为圆心作D,使得点A在D外,且点B在D内设D的半径为r,那么r的取值范围是_17从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是_ .三、解答题(共7小题,满分69分)18(10分)如图,AB为半圆O的直径,AC是O的一条弦,D为的中点,作DEAC,交AB的延长线于点F,连接DA求证:EF为半圆O的切线;若DADF6,求阴影区域的面积(结果保留根号和)19(5分)计算:|4sin30°|+()120(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”比赛项目为:A唐诗;B宋词;C论语;D三字经比赛形式分“单人组”和“双人组”小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明21(10分)如图,AB是O的直径,BC交O于点D,E是弧的中点,AE与BC交于点F,C=2EAB求证:AC是O的切线;已知CD=4,CA=6,求AF的长22(10分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?23(12分)如图,在平面直角坐标系xOy中,函数的图象与直线y2x+1交于点A(1,m).(1)求k、m的值;(2)已知点P(n,0)(n1),过点P作平行于y轴的直线,交直线y2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.当n3时,求线段AB上的整点个数;若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.24(14分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度=70米/分,故A正确,不符合题意;设乙的速度为x米/分则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题2、B【解析】平行四边形ADCE的对角线的交点是AC的中点O,当ODBC时,OD最小,即DE最小,根据三角形中位线定理即可求解【详解】平行四边形ADCE的对角线的交点是AC的中点O,当ODBC时,OD最小,即DE最小。ODBC,BCAB,ODAB,又OC=OA,OD是ABC的中位线,OD=AB=3,DE=2OD=6.故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.3、A【解析】连接AO,AB,PB,作PHOA于H,BCAO于C,解方程得到x22x=0得到点B,再利用配方法得到点A,得到OA的长度,判断AOB为等边三角形,然后利用OAP=30°得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PHOA于H,BCAO于C,如图当y=0时x22x=0,得x1=0,x2=2,所以B(2,0),由于y=x22x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,OAP=30°得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OPAP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.4、B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).因此,88000一共5位,88000=8.88×104. 故选B.考点:科学记数法.5、D【解析】由 又ADBC,所以 故A正确,不符合题意;过D作DMBE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由BAEADC,得到CD与AD的大小关系,根据正切函数可求tanCAD的值,故D错误,符合题意【详解】A.ADBC,AEFCBF, ,故A正确,不符合题意;B. 过D作DMBE交AC于N,DEBM,BEDM,四边形BMDE是平行四边形, BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DF=DC,DCF=DFC,故B正确,不符合题意;C. 图中与AEF相似的三角形有ACD,BAF,CBF,CAB,ABE共有5个,故C正确,不符合题意;D. 设AD=a,AB=b,由BAEADC,有 tanCAD 故D错误,符合题意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.6、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合7、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,2)关于y轴对称的点的坐标是(1,2),故选C【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.8、D【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断【详解】原数据的中位数是=3,平均数为=3,方差为×(1-3)2+(2-3)2+(4-3)2+(5-3)2=;新数据的中位数为3,平均数为=3,方差为×(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2;所以新数据与原数据相比中位数不变,方差变小,故选:D【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义9、B【解析】根据二次根式的运算法则即可求出答案【详解】A选项:原式3×26,故A不是无理数;B选项:原式,故B是无理数;C选项:原式6,故C不是无理数;D选项:原式12,故D不是无理数故选B【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型10、B【解析】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60°,ABC是等边三角形AC=ABAC=OAOA=1,AC=1画出第5次、第6次、第7次翻转后的图形,如图所示由图可知:每翻转6次,图形向右平移23=336×6+1,点B1向右平移1322(即336×2)到点B3B1的坐标为(1.5, ),B3的坐标为(1.5+1322,),故选B点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆【解析】利用正方形的性质得到 OA=OB=OC=OD,则以点O为圆心,OA长为半径作O,点B、C、D都在O 上,从而得到O 为正方形的外接圆【详解】四边形 ABCD 为正方形,OA=OB=OC=OD,O 为正方形的外接圆故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作12、【解析】设PM=x,根据黄金分割的概念列出比例式,计算即可【详解】设PM=x,则PN=1-x,由得,化简得:x2+x-1=0,解得:x1,x2(负值舍去),所以PM的长为【点睛】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割13、 见图形 【解析】分析:()利用勾股定理计算即可; ()连接AC、BD易知:ACBD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DGCH,所以FD:FC=DG:CH=5:8,可得DF=EF取格点I、J,连接IJ交BD于K,因为BIDJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:()AB的长=;()由题意:连接AC、BD易知:ACBD,可得:EC:ED=AC:BD=3:1取格点G、H,连接GH交DE于F DGCH,FD:FC=DG:CH=5:8,可得DF=EF 取格点I、J,连接IJ交BD于K BIDJ,BK:DK=BI:DJ=5:2连接EK交BF于P,可证BP:PF=5:3 故答案为();()由题意:连接AC、BD 易知:ACBD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F因为DGCH,所以FD:FC=DG:CH=5:8,可得DF=EF 取格点I、J,连接IJ交BD于K因为BIDJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3点睛:本题考查了作图应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型14、4 8 【解析】(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为故可列出方程求解.【详解】(1)ABC=150°,斜面BC的坡角为30°,h=4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为依题意得解得n=8故为八边形.【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.15、2【解析】试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,=16;,得出考点:不等式的性质点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键16、【解析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论【详解】解:RtABC中,ACB=90,AC=3,BC=,AB=1CDAB,CD=ADBD=CD2,设AD=x,BD=1-x解得x=,点A在圆外,点B在圆内,r的范围是,故答案为【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键17、144°【解析】根据多边形内角和公式计算即可.【详解】解:由题知,这是一个10边形,根据多边形内角和公式:每个内角等于.故答案为:144°.【点睛】此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.三、解答题(共7小题,满分69分)18、(1)证明见解析 (2)6【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出ODEF,即可得出答案;(2)直接利用得出SACDSCOD,再利用S阴影SAEDS扇形COD,求出答案【详解】(1)证明:连接OD,D为弧BC的中点,CADBAD,OAOD,BADADO,CADADO,DEAC,E90°,CAD+EDA90°,即ADO+EDA90°,ODEF,EF为半圆O的切线;(2)解:连接OC与CD,DADF,BADF,BADFCAD,又BAD+CAD+F90°,F30°,BAC60°,OCOA,AOC为等边三角形,AOC60°,COB120°,ODEF,F30°,DOF60°,在RtODF中,DF6,ODDFtan30°6,在RtAED中,DA6,CAD30°,DEDAsin30°3,EADAcos30°9,COD180°AOCDOF60°,由CODO,COD是等边三角形,OCD60°,DCOAOC60°,CDAB,故SACDSCOD,S阴影SAEDS扇形COD【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出SACDSCOD是解题关键19、41【解析】先逐项化简,再合并同类项或同类二次根式即可.【详解】解:原式3(2)123+21241【点睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.20、 (1) ;(2).【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=21、(1)证明见解析(2)2【解析】(1)连结AD,如图,根据圆周角定理,由E是的中点得到由于则,再利用圆周角定理得到则所以于是根据切线的判定定理得到AC是O的切线;先求出的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD,如图,E是的中点, AB是O的直径, 即 AC是O的切线;(2) ,【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.22、 ();()至少要购进20件甲商品;售完这些商品,则商场可获得的最大利润是2800元【解析】()根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;()根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;根据一次函数的增减性确定其最大值即可.【详解】()根据题意得:则y与x的函数关系式为(),解得至少要购进20件甲商品,y随着x的增大而减小当时,有最大值, 若售完这些商品,则商场可获得的最大利润是2800元【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.23、(1)m3,k3;(2)线段AB上有(1,3)、(2,5)、(3,7)共3个整点,当2n3时,有五个整点.【解析】(1)将A点代入直线解析式可求m,再代入,可求k.(2)根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1x3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.根据图象可以直接判断2n3.【详解】(1)点A(1,m)在y2x+1上,m2×1+13.A(1,3).点A(1,3)在函数的图象上,k3.(2)当n3时,B、C两点的坐标为B(3,7)、C(3,1).整点在线段AB上1x3且x为整数x1,2,3当x1时,y3,当x2时,y5,当x3时,y7,线段AB上有(1,3)、(2,5)、(3,7)共3个整点.由图象可得当2n3时,有五个整点.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.24、(1)36 , 40, 1;(2)【解析】(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数(2)画出树状图,根据概率公式求解即可【详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;该班共有学生(2+1+7+4+1+1)÷10%=40人;训练后篮球定时定点投篮平均每个人的进球数是=1,故答案为:36,40,1(2)三名男生分别用A1,A2,A3表示,一名女生用B表示根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M) 的结果有6种,P(M)=