山东省济南市历城区重点名校2023年中考一模数学试题含解析.doc
-
资源ID:88000739
资源大小:816KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省济南市历城区重点名校2023年中考一模数学试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )ABCD2如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A()B()C()D()3已知关于x的一元二次方程有实数根,则m的取值范围是( )ABCD4如图,在四边形ABCD中,A+D=,ABC的平分线与BCD的平分线交于点P,则P=() A90°-B90°+ CD360°-5如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A24 cm2B48 cm2C60 cm2D80 cm26下列代数运算正确的是()A(x+1)2=x2+1B(x3)2=x5C(2x)2=2x2Dx3x2=x57已知在四边形ABCD中,AD/BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )A若AB=CD,则四边形ABCD一定是等腰梯形;B若DBC=ACB,则四边形ABCD一定是等腰梯形;C若,则四边形ABCD一定是矩形;D若ACBD且AO=OD,则四边形ABCD一定是正方形8如图,实数3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A点MB点NC点PD点Q9如图,直线AB、CD相交于点O,EOCD,下列说法错误的是( )AAODBOCBAOEBOD90°CAOCAOEDAODBOD180°10下列运算结果正确的是()Ax2+2x23x4B(2x2)38x6Cx2(x3)x5D2x2÷x2x二、填空题(共7小题,每小题3分,满分21分)11如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_.12计算:12_13如图,点A是直线y=x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_14如图,在ABC中,AB5,AC4,BC3,按以下步骤作图:以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;作射线AE;以同样的方法作射线BF,AE交BF于点O,连接OC,则OC_.15若-2amb4与5a2bn+7是同类项,则m+n= 16一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3在x轴上,已知正方形A1B1C1D1的顶点C1的坐标是(,0),B1C1O=60°,B1C1B2C2B3C3则正方形A2018B2018C2018D2018的顶点D2018纵坐标是_17若正n边形的内角为,则边数n为_.三、解答题(共7小题,满分69分)18(10分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC(参考数据:sin76°,cos76°,tan 76°4,sin53°,tan53°)19(5分)在平面直角坐标系xOy中,点C是二次函数ymx24mx4m1的图象的顶点,一次函数yx4的图象与x轴、y轴分别交于点A、B(1)请你求出点A、B、C的坐标;(2)若二次函数ymx24mx4m1与线段AB恰有一个公共点,求m的取值范围20(8分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F(1)如图,当=60°时,连接DD',求DD'和A'F的长;(2)如图,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值21(10分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40a100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22(10分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 °;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率23(12分)如图,已知点C是AOB的边OB上的一点,求作P,使它经过O、C两点,且圆心在AOB的平分线上24(14分)如图,AB为O直径,过O外的点D作DEOA于点E,射线DC切O于点C、交AB的延长线于点P,连接AC交DE于点F,作CHAB于点H(1)求证:D=2A;(2)若HB=2,cosD=,请求出AC的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据“左加右减、上加下减”的原则,将抛物线向左平移1个单位所得直线解析式为:;再向下平移3个单位为:故选D2、A【解析】直接利用相似三角形的判定与性质得出ONC1三边关系,再利用勾股定理得出答案【详解】过点C1作C1Nx轴于点N,过点A1作A1Mx轴于点M,由题意可得:C1NO=A1MO=90°,1=2=1,则A1OMOC1N,OA=5,OC=1,OA1=5,A1M=1,OM=4,设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,)故选A【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出A1OMOC1N是解题关键3、C【解析】解:关于x的一元二次方程有实数根,=,解得m1,故选C【点睛】本题考查一元二次方程根的判别式4、C【解析】试题分析:四边形ABCD中,ABC+BCD=360°(A+D)=360°,PB和PC分别为ABC、BCD的平分线,PBC+PCB=(ABC+BCD)=(360°)=180°,则P=180°(PBC+PCB)=180°(180°)=故选C考点:1.多边形内角与外角2.三角形内角和定理5、A【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=rl=×6×4=14cm1故选:A【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查6、D【解析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.7、C【解析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.故选C.8、D【解析】实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,原点在点M与N之间,这四个数中绝对值最大的数对应的点是点Q故选D9、C【解析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得【详解】A、AOD与BOC是对顶角,所以AOD=BOC,此选项正确;B、由EOCD知DOE=90°,所以AOE+BOD=90°,此选项正确;C、AOC与BOD是对顶角,所以AOC=BOD,此选项错误;D、AOD与BOD是邻补角,所以AOD+BOD=180°,此选项正确;故选C【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义10、C【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(2x2)3=8x6,故此选项错误;C选项:x2(x3)=x5,故此选项正确;D选项:2x2÷x2=2,故此选项错误故选C【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键二、填空题(共7小题,每小题3分,满分21分)11、.【解析】找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论【详解】从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,所画三角形时等腰三角形的概率是,故答案是:【点睛】考查的是概率公式,熟记随机事件A的概率P(A)事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键12、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案为-3.13、4【解析】作ANx轴于N,可设A(x,x),在RtOAN中,由勾股定理得出方程,解方程求出x=2,得出A(2,2),即可求出k的值【详解】解:作ANx轴于N,如图所示:点A是直线y=x与反比例函数y=的图象在第二象限内的交点,可设A(x,x)(x0),在RtOAN中,由勾股定理得:x2+(x)2=42,解得:x=2,A(2,2),代入y=得:k=2×2=4;故答案为4【点睛】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键14、【解析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案【详解】过点O作ODBC,OGAC,垂足分别为D,G,由题意可得:O是ACB的内心,AB=5,AC=4,BC=3,BC2+AC2=AB2,ABC是直角三角形,ACB=90°,四边形OGCD是正方形,DO=OG=1,CO=故答案为【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键15、-1【解析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案试题解析:由-2amb4与5a2bn+7是同类项,得,解得m+n=-1考点:同类项16、×()2【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【详解】解:B1C1O=60°,C1O=,B1C1=1,D1C1E1=30°,sinD1C1E1=,D1E1=,B1C1B2C2B3C360°=B1C1O=B2C2O=B3C3O=B2C2=,B3C3=. 故正方形AnBnCnDn的边长=()n-1B2018C2018=()2D2018E2018=×()2,D的纵坐标为×()2,故答案为×()2.【点睛】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键17、9【解析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).三、解答题(共7小题,满分69分)18、工作人员家到检查站的距离AC的长约为km【解析】分析:过点B作BHl交l于点H,解RtBCH,得出CH=BCsinCBH=,BH=BCcosCBH=再解RtBAH中,求出AH=BHtanABH=,那么根据AC=CH-AH计算即可.详解:如图,过点B作BHl交l于点H,在RtBCH中,BHC=90°,CBH=76°,BC=7km,CH=BCsinCBH,BH=BCcosCBH在RtBAH中,BHA=90°,ABH=53°,BH=,AH=BHtanABH,AC=CHAH=(km)答:工作人员家到检查站的距离AC的长约为km点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键19、(1)A(4,0)和B(0,4);(2)或【解析】(1)抛物线解析式配方后,确定出顶点C坐标,对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出A与B坐标;(2)分m0与m0两种情况求出m的范围即可【详解】解:(1)ymx24mx4m1m(x2)21,抛物线顶点坐标为C(2,1),对于yx4,令x0,得到y4;y0,得到x4,直线yx4与x轴、y轴交点坐标分别为A(4,0)和B(0,4);(2)把x4代入抛物线解析式得:y4m1,当m0时,y4m10,说明抛物线的对称轴左侧总与线段AB有交点,只需要抛物线右侧与线段AB无交点即可,如图1所示,只需要当x0时,抛物线的函数值y4m14,即,则当时,抛物线与线段AB只有一个交点;当m0时,如图2所示,只需y4m10即可,解得:,综上,当或时,抛物线与线段AB只有一个交点【点睛】此题考查了抛物线与x轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解本题的关键20、(1)DD=1,AF= 4;(2);(1)【解析】(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形A'B'C'D',只要证明CDD是等边三角形即可解决问题;如图中,连接CF,在RtCDF中,求出FD即可解决问题;(2)由ADFADC,可推出DF的长,同理可得CDECBA,可求出DE的长,即可解决问题;(1)如图中,作FGCB于G,由SACF=ACCF=AFCD,把问题转化为求AFCD,只要证明ACF=90°,证明CADFAC,即可解决问题;【详解】解:(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形A'B'C'D',AD=AD=BC=BC=4,CD=CD=AB=AB=1ADC=ADC=90°=60°,DCD=60°,CDD是等边三角形,DD=CD=1如图中,连接CFCD=CD,CF=CF,CDF=CDF=90°,CDFCDF,DCF=DCF=DCD=10°在RtCDF中,tanDCF=,DF=,AF=ADDF=4(2)如图中,在RtACD中,D=90°,AC2=AD2+CD2,AC=5,AD=2DAF=CAD,ADF=D=90°,ADFADC,DF=同理可得CDECBA,ED=,EF=ED+DF=(1)如图中,作FGCB于G四边形ABCD是矩形,GF=CD=CD=1SCEF=EFDC=CEFG,CE=EF,AE=EF,AE=EF=CE,ACF=90°ADC=ACF,CAD=FAC,CADFAC,AC2=ADAF,AF=SACF=ACCF=AFCD,ACCF=AFCD=21、(1)y1=(120-a)x(1x125,x为正整数),y2=100x-0.5x2(1x120,x为正整数);(2)110-125a(万元),10(万元);(3)当40a80时,选择方案一;当a=80时,选择方案一或方案二均可;当80a100时,选择方案二【解析】(1)根据题意直接得出y1与y2与x的函数关系式即可;(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值又因为0.50,可求出y2的最大值;(3)第三问要分两种情况决定选择方案一还是方案二当2000200a1以及2000200a1【详解】解:(1)由题意得:y1=(120a)x(1x125,x为正整数),y2=100x0.5x2(1x120,x为正整数);(2)40a100,120a0,即y1随x的增大而增大,当x=125时,y1最大值=(120a)×125=110125a(万元)y2=0.5(x100)2+10,a=0.50,x=100时,y2最大值=10(万元);(3)由110125a10,a80,当40a80时,选择方案一;由110125a=10,得a=80,当a=80时,选择方案一或方案二均可;由110125a10,得a80,当80a100时,选择方案二考点:二次函数的应用22、(1)60,1°(2)补图见解析;(3) 【解析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案【详解】(1)接受问卷调查的学生共有30÷50%60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×1°,故答案为60,1(2)了解的人数有:601530105(人),补图如下:(3)画树状图得:共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,恰好抽到1个男生和1个女生的概率为【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率所求情况数与总情况数之比23、答案见解析【解析】首先作出AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可【详解】解:如图所示:【点睛】本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键.24、(1)证明见解析;(2)AC=4.【解析】(1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可【详解】(1)连接射线切于点,由圆周角定理得:,;(2)由(1)可知:,设的半径为,则,在中,由勾股定理可知:,在中,由勾股定理可知:【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键