山东省济宁市嘉祥县2022-2023学年中考数学仿真试卷含解析.doc
-
资源ID:88000748
资源大小:753KB
全文页数:23页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省济宁市嘉祥县2022-2023学年中考数学仿真试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD2如图,将ABC沿BC边上的中线AD平移到A'B'C'的位置,已知ABC的面积为9,阴影部分三角形的面积为1若AA'=1,则A'D等于()A2B3CD3已知一次函数y=kx+3和y=k1x+5,假设k0且k10,则这两个一次函数的图像的交点在( )A第一象限B第二象限C第三象限D第四象限4下列运算正确的是()Aa2+a2=a4B(a+b)2=a2+b2Ca6÷a2=a3D(2a3)2=4a65有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC6不等式组的解集是 ()Ax1Bx3C1x3Dx37计算的值为( )AB-4CD-28下面的图形中,既是轴对称图形又是中心对称图形的是( ) A B C D96的倒数是()ABC6D610下列图案中,既是中心对称图形,又是轴对称图形的是()ABCD11去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A最低温度是32B众数是35C中位数是34D平均数是3312如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( )A线段EF的长逐渐增大B线段EF的长逐渐减少C线段EF的长不变D线段EF的长不能确定二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,直线mn,ABC为等腰直角三角形,BAC=90°,则1= 度14如图,半圆O的直径AB=2,弦CDAB,COD=90°,则图中阴影部分的面积为_15如图,C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(,0),M 是圆上一点,BMO=120°C 圆心 C 的坐标是_16一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_17在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘131,其 浓度为0.0000872贝克/立方米数据“0.0000872”用科学记数法可表示为_18已知抛物线y=ax2+bx+c=0(a0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 _三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知A(4,n),B(2,4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及AOB的面积;(3)求方程的解集(请直接写出答案)20(6分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为 ;题探究:(2)当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为 ;当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=,DEM=15°,则DM= 21(6分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值22(8分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里求AP,BP的长(参考数据:1.4,1.7,2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?23(8分)定义:任意两个数a,b,按规则cb2+aba+7扩充得到一个新数c,称所得的新数c为“如意数”若a2,b1,直接写出a,b的“如意数”c;如果a3+m,bm2,试说明“如意数”c为非负数24(10分)如图,顶点为C的抛物线y=ax2+bx(a0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,AOB=120°(1)求这条抛物线的表达式;(2)过点C作CEOB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE,旋转角为(0°120°),连接EA、EB,求EA+EB的最小值25(10分)已知关于x的一元二次方程x2mx20若x1是方程的一个根,求m的值和方程的另一根;对于任意实数m,判断方程的根的情况,并说明理由26(12分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.27(12分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理(1)填空_,_,数学成绩的中位数所在的等级_(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数如下分数段整理样本等级等级分数段各组总分人数48435741712根据上表绘制扇形统计图参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.2、A【解析】分析:由SABC=9、SAEF=1且AD为BC边的中线知SADE=SAEF=2,SABD=SABC=,根据DAEDAB知,据此求解可得详解:如图,SABC=9、SAEF=1,且AD为BC边的中线,SADE=SAEF=2,SABD=SABC=,将ABC沿BC边上的中线AD平移得到A'B'C',AEAB,DAEDAB,则,即,解得AD=2或AD=-(舍),故选A点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点3、B【解析】依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.4、D【解析】根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则5、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.6、B【解析】根据解不等式组的方法可以求得原不等式组的解集【详解】,解不等式,得x-1,解不等式,得x1,由可得,x1,故原不等式组的解集是x1故选B【点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法7、C【解析】根据二次根式的运算法则即可求出答案【详解】原式=-3=-2,故选C【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型8、B【解析】试题解析:A. 是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形;C.是中心对称图形,但不是轴对称图形;D.是轴对称图形不是中心对称图形;故选B.9、A【解析】解:6的倒数是故选A10、B【解析】根据轴对称图形与中心对称图形的概念解答【详解】A不是轴对称图形,是中心对称图形;B是轴对称图形,是中心对称图形;C不是轴对称图形,也不是中心对称图形;D是轴对称图形,不是中心对称图形故选B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合11、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31,众数为33,中位数为33,平均数是=33 故选D点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据12、C【解析】因为R不动,所以AR不变根据三角形中位线定理可得EF= AR,因此线段EF的长不变【详解】如图,连接AR,E、F分别是AP、RP的中点, EF为APR的中位线,EF= AR,为定值线段EF的长不改变故选:C【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题分析:ABC为等腰直角三角形,BAC=90°,ABC=ACB=1°,mn,1=1°;故答案为1考点:等腰直角三角形;平行线的性质14、 【解析】解:弦CDAB,SACD=SOCD,S阴影=S扇形COD=故答案为15、(,)【解析】连接AB,OC,由圆周角定理可知AB为C的直径,再根据BMO=120°可求出BAO以及BCO的度数,在RtCOD中,解直角三角形即可解决问题;【详解】连接AB,OC,AOB=90°,AB为C的直径,BMO=120°,BAO=60°,BCO=2BAO=120°,过C作CDOB于D,则OD=OB,DCB=DCO=60°,B(-,0),BD=OD=在RtCOD中CD=ODtan30°=,C(-,),故答案为C(-,)【点睛】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键16、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:共有9种等可能的结果,两次摸出的球都是红球的由4种情况,两次摸出的球都是红球的概率是,故答案为.【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.17、【解析】科学记数法的表示形式为ax10n的形式,其中1lal<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.0000872=故答案为:【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18、或x=-1【解析】由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴【详解】点A的坐标为(-2,0),线段AB的长为8,点B的坐标为(1,0)或(-10,0)抛物线y=ax2+bx+c(a0)与x轴交于A、B两点,抛物线的对称轴为直线x=2或x=-1故答案为x=2或x=-1【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=,y=x2(2)3(3)4x0或x2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集试题解析:(1)B(2,4)在y=上,m=1反比例函数的解析式为y=点A(4,n)在y=上,n=2A(4,2)y=kx+b经过A(4,2),B(2,4),解之得一次函数的解析式为y=x2(2)C是直线AB与x轴的交点,当y=0时,x=2点C(2,0)OC=2SAOB=SACO+SBCO=×2×2+×2×4=3(3)不等式的解集为:4x0或x220、 (1) DM=AD+AP ;(2) DM=ADAP ; DM=APAD ;(3) 3或1【解析】(1)根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;(2)根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;(3)分两种情况利用勾股定理和三角函数解答即可【详解】(1)DM=AD+AP,理由如下:正方形ABCD,DC=AB,DAP=90°,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,DP=PE,PNE=90°,DPE=90°,ADP+DPA=90°,DPA+EPN=90°,DAP=EPN,在ADP与NPE中,ADPNPE(AAS),AD=PN,AP=EN,AN=DM=AP+PN=AD+AP;(2)DM=ADAP,理由如下:正方形ABCD,DC=AB,DAP=90°,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,DP=PE,PNE=90°,DPE=90°,ADP+DPA=90°,DPA+EPN=90°,DAP=EPN,在ADP与NPE中,ADPNPE(AAS),AD=PN,AP=EN,AN=DM=PNAP=ADAP;DM=APAD,理由如下:DAP+EPN=90°,EPN+PEN=90°,DAP=PEN,又A=PNE=90°,DP=PE,DAPPEN,AD=PN,DM=AN=APPN=APAD;(3)有两种情况,如图2,DM=3,如图3,DM=1;如图2:DEM=15°,PDA=PDEADE=45°15°=30°,在RtPAD中AP=,AD=3,DM=ADAP=3;如图3:DEM=15°,PDA=PDEADE=45°15°=30°,在RtPAD中AP=,AD=APtan30°=1,DM=APAD=1故答案为;DM=AD+AP;DM=ADAP;3或1【点睛】此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出ADPPFN是解本题的关键21、 (1)y=3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数【详解】(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(123x)=3.4x+141.1(1)根据题意得:,解得:7x,x为整数,7x210.60,y随x增大而减小,当x=7时,y取最大值,最大值=3.4×7+141.1=117.4,此时:1x+1=12,123x=1答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.22、(1)AP60海里,BP42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】(1)过点P作PEAB于点E,则有PE=30海里,由题意,可知PAB=30°,PBA=45°,从而可得 AP60海里,在RtPEB中,利用勾股定理即可求得BP的长; (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PEMN,垂足为E,由题意,得PAB90°60°30°,PBA90°45°45°,PE30海里,AP60海里,PEMN,PBA45°,PBEBPE 45°,PEEB30海里,在RtPEB中,BP3042海里,故AP60海里,BP42(海里); (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得,解得x20,经检验,x20是原方程的解,甲船的速度为1.2x1.2×2024(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.23、(1)4;(2)详见解析.【解析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)a2,b1cb2+aba+71+(2)2+74(2)a3+m,bm2cb2+aba+7(m2)2+(3+m)(m2)(3+m)+72m24m+22(m1)2(m1)20“如意数”c为非负数【点睛】本题考查了因式分解,完全平方式(m1)2的非负性,难度不大24、 (1) y=x2x;(2)点P坐标为(0,)或(0,);(3).【解析】(1)根据AO=OB=2,AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP=2OC时,POC与AOE相似;(3)如图,取Q(,0)连接AQ,QE由OEQOBE,推出,推出EQ=BE,推出AE+BE=AE+QE,由AE+EQAQ,推出EA+EB的最小值就是线段AQ的长.【详解】(1)过点A作AHx轴于点H,AO=OB=2,AOB=120°,AOH=60°,OH=1,AH=,A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,抛物线的表达式为:y=x2-x;(2)如图,C(1,-),tanEOC=,EOC=30°,POC=90°+30°=120°,AOE=120°,AOE=POC=120°,OA=2OE,OC=,当OP=OC或OP=2OC时,POC与AOE相似,OP=,OP=,点P坐标为(0,)或(0,)(3)如图,取Q(,0)连接AQ,QE ,QOE=BOE,OEQOBE,EQ=BE,AE+BE=AE+QE,AE+EQAQ,EA+EB的最小值就是线段AQ的长,最小值为【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题25、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式与1的关系进行判断(1)把x=-1代入得1+m-2=1,解得m=12-2=1另一根是2;(2),方程有两个不相等的实数根考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式的关系:当1,方程有两个不相等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根26、(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的面积为:=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.27、(1)6;8;B;(2)120人;(3)113分【解析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数【详解】(1)本次抽查的学生有:(人),数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:(分),即A等级学生的数学成绩的平均分是113分【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答