基于ADS的微带天线的设计与仿真(共69页).doc
精选优质文档-倾情为你奉上基于ADS的微带天线的设计与仿真The design and simulation of PIFA based on ADS王伟堃(Wang Weikun)计算机与通信学院本科生毕业设计说明书基于ADS的微带天线的设计与仿真作 者:王伟堃学 号:专 业:通信工程班 级:06级通信工程(1)班指导教师:侯 亮答辩时间:2010年6月15日专心-专注-专业前 言平面倒F天线(PIFA,Planar Inverted F Antenna)主要应用在手机终端中,由于其体积小、重量轻、成本低、性能好,符合当前无线终端对天线的要求,因而得到广泛的应用,进行了许多研究工作。先进设计系统(Advanced Design System),简称ADS,是安捷伦科技有限公司(Agilent)为适应竞争形势,为了高效的进行产品研发生产,而设计开发的一款EDA软件。软件迅速成为工业设计领域EDA软件的佼佼者,因其强大的功能、丰富的模板支持和高效准确的仿真能力(尤其在射频微波领域),而得到了广大IC设计工作者的支持。ADS可以模拟整个信号通路,完成从电路到系统的各级仿真。它把广泛的经过验证的射频、混合信号和电磁设计工具集成到一个灵活的环境中,包括从原理图到PCB 板图的各级仿真,当任何一级仿真结果不理想时,都可以回到原理图中重新进行优化,并进行再次仿真,直到仿真结果满意为止,保证了实际电路与仿真电路的一致性。本设计通过ADS软件对微带天线进行设计,设计了平面倒F天线,即PIFA天线的设计以及利用Hilbert分型结构对天线小型化设计。论文主要包括:PIFA天线的介绍,ADS软件的使用,PIFA天线的设计以及仿真,优化及结果分析等内容。论文结构安排如下:第一章绪论;第二章FIFA天线原理及介绍;第三章ADS软件的使用;第四章PIFA天线的设计;第五章仿真优化及结果分析。第一章介绍了本设计要解决的问题,提出了用ADS软件设计PIFA天线。第二章详细介绍了PIFA天线的工作原理和Hilbert分型结构的原理。第三章介绍本次设计主要用到的ADS相关的功能。第四章详细的介绍了设计的全过程。第五章就仿真结果及进一步优化做了详尽的分析。由于水平有限,设计难免存在漏洞和缺陷,欢迎批评指正。摘 要平面倒F天线(PIFA,Planar Inverted F Antenna)是一种常用的平面天线,平面倒F天线具有体积小,重量轻,低剖面,结构简单,易于加工制作等优点,因此被广泛应用于移动电话等移动通信终端设备上。本设计通过ADS软件对PIFA天线进行仿真设计,尝试了一种PIFA天线设计方法。在文中给出了清晰地设计的步骤,阐述了设计中微带天线参数的计算方法,结合设计方法给出了一个中心频率为2.4GHz,工作带宽不小于120MHz,增益大于1.5dB,输入阻抗接近50, 方向图接近全向或半全向,具有水平和垂直极化特性的微带天线的设计及利用Hilbert分型结构小型化天线 的设计。仿真结果的分析验证了此方法的正确性和可行性。该方法利用ADS仿真软件进行微带天线的设计,可减少工作量,提高设计的准确性,降低设计成本,因而可使设计工作简单化,能够达到事半功倍的效果。关键词:微带;PIFA;Hilbert;ADSAbstractPlanar inverted F antenna (PIFA, Planar Inverted F Antenna) is a common planar antenna. Planar inverted F antenna has the feature of small-volumed, lightweight, low-profile,and simple structure and it is easy to manufacture, etc. Therefore, it is widely used in mobile phones and other mobile communication terminal devices. The simulation design pattern to the PIFA antenna is a new way that used by the ADS software. The text shows a clear step of the design, and elaborate the caculating method to the microstrip antenna. Combined with the design method, the microstrip antenna, its center frequency is 2.4GHz, and working bandwidth is no less than 120MHz,and the gain is larger than 1.5dB, input impedance close to 50. The design uses Hilbert typing small-structure antennas. Direction pattern is close to full or half-full, which also have horizontal and vertical polarization. The analysis of simulation results shows its correctness and feasibility. The method will be able to advance in reducing the workload, improving design accuracy, reducing design costs, so it can simplify the design work, and achieve a betterr effect.Keywords:microstrip; PIFA;Hilbert;Advanced Design System目 录图目录第1章 绪 论现代无线通信的飞速发展对无线通信设备的设计提出了越来越高的要求。平面倒F天线(PIFA)具有尺寸小,重量轻且后向辐射小等优点而成为目前内置天线的主要形式。不断缩小的空间对天线性能提高提出了一个巨大挑战,尤其对带宽的要求仍然很高,目前PIFA提高带宽的方法有很多,诸如增加寄生贴片,开矩形凹槽,改变馈点的结构,加多层贴片或多个支路等,其中改变馈点结构是最直接有效的方法,但是此种方法在实际设计中不易实现,本文利用Hilbert分型结构来小型化平面倒F贴片天线,分形结构的天线具有良好的尺寸缩减特性,可以在有限的空间内大幅度提高天线的效率。利用一维的Hilbert分形结构在天线在尺寸的缩减的同时,具有较高的天线效率。现有已使用的RFID标签天线,大多数设计成单极鞭形天线,其结构简单,但所占用空间较大。现代无线通信领域常采用的天线是倒F型单极天线,它结构紧凑,带宽适中,不容易损坏,而且功耗更低。同时,分形结构的特性之一就是具有空间填充性能,即分形能够在很小的体积内充分地利用空间。而采用分形结构设计的天线,可以大大减小天线的尺寸,提高系统的稳定性。下文将设计一个中心频率为2.4GHz,工作带宽不小于120MHz,增益大于1.5dB,输入阻抗接近50, 方向图接近全向或半全向,具有水平和垂直极化特性的平面倒F天线。第2章 平面倒F天线原理2.1微带天线简介微带天线最初提出于20世纪50年代,发展于70年代,成熟于80年代,特别是在航天设备和便携式通信系统中。与其他类型的天线相比,微带天线具有重量轻,剖面小,结构紧凑,外观优美等众多优点,而且能够做成共形天线,便于制造和集成,成为了天线领域的一个研究热点。天线理论分析的基本问题就是求解天线在周围空间辐射的电磁场,求得电磁场数据后,进而计算出方向图,增益以及输入阻抗等特性参数。迄今为止已经提出了众多方法对微带天线进行理论分析,常见的方法有传输线模型理论,空腔模型理论等,这些分析方法相对比较简单,缺点是精度不够。相对比较严格的计算方法也比较复杂的是积分方程法,即全波理论,而对于复杂的微带天线结构一般都是利用数值分析的方法。2.1.1微带天的结构微带天线的基本结构如图21所示。其结构一般包括三部分:介质基片、接地面和微带辐射器。基片地板微带辐射器微带馈线/2h图2.1 微带天线的基本结构辐射贴片和接地面一般采用铜或者其它金属作为材料,形状可以设计成各种各样来满足不同的要求。介质基片的相对介电常数通常较小,一般不超过10,通常取<25,这样可以增加天线贴片的边缘效应来提高微带天线的辐射能力。但是其它的性能则要求使用介电常数大于5的介质基片材料。目前,已制成了介电常数范围较大和损耗角正切低的各种类型的介质基片。介质基片很薄,其厚度h远小于工作波长,一般在0.001名0.1之间。2.1.2微带天线的分类由定义可知,微带天线贴片和接地板可以根据应用需要设计成各种不同的形状,但总体来讲,都可以将其分为以下三种基本类型:微带贴片天线、微带行波天线和微带缝隙天线。微带贴片天线简称MPA(Microstrip PatchAntenna),是结构最简单的微带天线。常见的贴片几何形状有:正方形、矩形、圆形、三角形、五角形、环形等。微带行波天线简称MTA(Microstrip Traveling-wave Antenna),其贴片为链形周期结构或TEM波传输线结构。TEM波传输线的末端接匹配负载,当天线上维持行波时,可以从天线结构设计上使主波束位于从边射到端射的任意方向。微带缝隙天线简称MSA(Microstrip Slot Antenna)由微带馈线和开在地板上的缝隙组成。缝隙可以是矩形(根据矩形的窄或宽可分为窄缝天线和宽缝天线),圆形或环形等。微带行波天线简称MTA(Microstrip Traveling-wave Antenna),由基片、在基片一面上的链形周期结构或普通的长TEM波传输线(也维持一个TE模)和基片另一面上的接地板组成。原则上,任何一个TEM波传输体都可以改造成一个行波天线。对徽带线前言,TEM波传输线天线分为两种:微带线终端接匹配负载的行波天线和微带线终端为开路或短路的驻波天线。通常驻波天线为边射,而行波天线的辐射则可设计成从后射直到端射之间的任一方向上。因此,当波瓣指向边射方向时,行波天线就成为驻波天线。微带行波天线一般为周期性结构,可预先计算其辐射特性。同其它行波天线一样,可以用频率来控制主辐射方向。微带缝隙天线简称MSA(Microstrip Slot Antenna),由微带馈线和开在接地板上的缝隙组成。其概念是由带状线缝隙天线发展丽来的,更确切地说,是由三板传输线发展过来的。带状线缝隙天线的研究和应用都已比较成熟,但要注意抑制在“开槽”的接地板和外导体之间产生电位差的那些不希望的模。窄缝宽缝圆环缝MSA的优点是能产生双向或者单向方向图。在微带天线的设计中,采用贴片和缝隙的组合结构,可以额外增添一个自由度。沿着微带馈线一边排列的导带和缝隙的组合可以产生圆极化辐射场。微带缝隙天线能产生所希望获得的极化,且对制造公差的敏感度比微带贴片天线要低。2.1.3微带天线的馈电方法微带天线馈电方法可以分为间接馈电和直接馈电两种。间接馈电是指无需微带线连接,而是通过电磁耦合的方式进行馈电;直接馈电是指通过将馈线与金属贴片相连而进行馈电。直接馈电又分两种方式:同轴线馈电(Probe feed)和微带线馈电(Microstrip Line feed)。2.1.4徽带天线的优缺点微带天线具有很多的优点,如:1.剖面薄,体积小,重量轻;2.具有平面结构,并可制成与导弹、卫星等载体表面帽共形的结构;3.便于获得圆极化波:4.可以设计成多频和双极化天线;5.不需要后面加腔体;6.天线的馈电结构和匹配网络可以和天线同时制作;7.馈电网络可与天线结构一起制成,适合于用印刷电路技术大批量生产;8.可以做得很薄,因此,不影响装载于飞行器上的空气动力学性能;9.适合于组合式设计(固体器件,如振荡器、放大器、可变衰减器、开关、调制器、混频器、移相器等可以直接加到天线基片上)。同时,微带天线也有一定的局限性,如:a.带宽较窄;b.增益有些情况下不能满足要求(约为6dB);c.组成阵列时会有较大的阻抗损耗;d.有导体和介质损耗,并且会激励表面波,导致辐射效率降低;e.高性能阵列天线对馈电网络有很严格的要求;f.很难得到较高的极化纯度;g.馈线和连接部分会引入额外的辐射;h.功率容量较小,一般用于中小功率场合;i.在高频时会出现增益和效率下降,交叉极化增加,阵列中出现较大的互耦;j.在和微波单片集成电路相结合时,往往会选择一些介电常数很大的介质,但是介电常数很大的介质会使得天线的效率下降,带宽变窄。2.1.5微带天线的应用由于微带天线有其独特的优点,它的一些缺点也正在逐渐地被研究克服,并且在许多实际设计中,微带天线的优点远远超过它的缺点,因此它有广阔的应用前景。一般说来,它在飞行器上的应用处于优越地位,可用于雷达、通信、导航、测高计、着陆系统;此外它还可应用于直传广播电视、遥感雷达和辐射计、移动卫星电话、移动电台、手机、车顶天线、基站天线、生物医疗系统、监控系统等等。2.2分形理论简介2.2.1分形的定义分形理论是当今世界十分风靡和活跃的新理论、新学科,它的研究对象是自然界非线性科学中出现的不光滑和不规则的几何体。分形的概念是美籍数学家曼德布罗特(BBMandelbort)首先提出的。1967年他在美国权威杂志科学上发表了题为英国的海岸线有多长?的著名论文。“海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层"曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。1975年,他创立了分形几何学(fractal geometry)。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractal theory)。经过二十几年的发展,它已广泛地应用到自然科学和社会科学的几乎所有领域,成为当今国际上许多学科的前沿研究课题之一。有关分形的概念,科学史上有记载的最早是由Hausdorff于1919年引入,随后经Besicovitch于1 935年和BBMandelbrot于1975年加以改进和发展。BBMandelbrot曾经为分形下过两个定义:(1)满足下式条件Dim(A)>dim(A)的集合A,称为分形集。其中,Dim(A)为集合A的Hausdorff维数或分维数,dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数;(2)部分与整体以某种形式相似的形态,称为分形。然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还没有确切的定义。正如生物学中“生命”的定义一样,人们只能列出一系列生命体所具有的特征,比如对环境的适应能力、生命能力、运动能力以及繁殖能力等等来说明。现在,人们一般采用著名分形几何学家Falconer在分形集几何学中对分形集合F的描述来判断某一对象是否是分形。他的观点是最好把分形看成是具有某些特性的集合,而不用去寻找一个几乎概括所有情形的精确定义。因此,Falconer列出了五条用不确定性语言描述的分形集的特性:(1)分形集都具有任意小尺度下的比例细节,(2)分形集不能用传统的几何语言来描述,或者说它具有精细的结构。它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。(3)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。(4)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。(5)分形的生成方式很简单,可以用递归迭代产生。其中前三项说明了分形在结构上的内在规律性,第(4)项说明了分形的复杂性,第(5)项则说明了分形的生成机制。2.2.2分形维数分形维数是分形理论中最重要的一个概念,它是对非光滑、非规则、破碎的等极其复杂的分形客体进行定量刻画的重要参数,它表征了分形体的复杂程度、粗糙程度,即分形维数越大,客体就越复杂、越粗糙,反之亦然。维数概念历来在数学和物理学中占据着重要的地位。按传统的观点,维数是确定系统状态的独立变量,只能取整数。然而,在分形理论中,对于一个分形客体,它的维数一般都不限于整数,而可取任何实数值。分形维数是定量刻画分形特性的常数,能够反映分形的基本特征,而且赋予了很多崭新的内涵,但由于侧重面不同,有多种定义和计算方法。常见的有Hausdorff维、信息维、容量维等,它们有各自不同的应用。下面介绍几种常见的分形维数定义:(1)Hausdorff维数设一个客体划分为个大小和形态完全相同的小客体,每一个小客体的线度是原客体的6倍,该客体的Hausdorff维数为: (2.2.1)其中表示整体所包含的小图形的个数。如果把一个客体的线度放大L倍,那么得到的新客体是原客体的K倍,则该客体的维数为 (2.2.2)(2)信息维数在Hausdorff维数现的定义中,只考虑了所需覆盖的个数,而不考虑每个覆盖中所含分形集元素的多少。设表示分形集的元素属于覆盖中的概率,则信息维数为: (2.2.3)在等概率的情况下,即信息维数等于Hausdorff维数。(3)并联维数若分形中某两点之间的距离为,其关联函数为,则关联维数为: (2.2.4)式中: (2.2.5)(4)相似维数设分形整体S是由N个非重叠的部分组成,如果每一个部分经过放大倍后可与S全等(N),并且,则相似维数为: (2.2.6)相似维数风与Hausdorff维数是一致的,但在某些情况下,特别是对某些分形曲线,用相似维数似乎要更方便些。(5)容量维数容量维数是由Kolmogorov推导的,它的定义类似于Hausdorff维数,是以包覆为基础的。假定要考虑的图形是n维欧氏空间中的有界集合,用半径为的球填入该图形,假定是球的个数最小值,则容量维数可用下式来定义: (2.2.7)除上述定义的几种分形维数外,还有谱维数、模糊维数、拓扑维数、广义维数、微分维数、分配维数、质量维数、填充维数等。在分析研究中,之所以对分形维数有很多定义是因为要找到对任何事物都适用的定义并不容易。由于测定维数的对象不同,就某一分形维数的定义而言,有些对象适用,而另外一些就可能完全不适用,因而对不同定义的维数使用不同的名称把它们区分开。为了便于表示,通常把非整数值的维数统称为分形维数。2.1.3分形结构的描述语言描述分形结构的通用方法是函数迭代系统(IFS),它能够方便地生成各种分形结构。函数迭代系统(IFS)建立在一系列自仿变换因子W的基础上,完成对初始几何结构的迭代。W可用公式表示为: (2.2.8)或者等价于 (2.2.9)式中,a、b、c、d、e、f为实数,a、b、c、d控制几何结构的旋转和伸缩,e、f控制几何结构线性位移。假设存在一系列自仿变换因子集合W=和一个最初的几何结构么。那么,将这些自仿变换因子集合形作用于初始几何结构么,就会生成一系列新的几何结构,我们将其记为,把这些结果做并集就可以得到新的几何结构,表示如下: (2.2.10)式中,称为H算子(Hutchinson Operator)。将作用于就可以生成下一个几何结构,依次类推,将反复作用于前一个几何结构,就可以不断地生成新的几何结构。函数迭代系统就是通过这个迭代方式,可以根据具体需要,在初始几何结构的基础上,生成任意阶的分形结构。例如,设集合为一个初始几何结构,则由该初始几何结构生成的第K+1阶分形结构可以通过以下迭代得到: (2.2.11)一个函数迭代系统通过反复作用于一个几何结构会生成一个收敛的几何结构序列,这个最终的几何结构可以由下式表示: (2.2.12)这个几何结构函数迭代系统的“吸引子”,代表自仿变换因子集合W的一个“固定点”。由于函数迭代系统提供了一种描述、分类和操作分形结构的通用方法,所以它是分形结构设计的强有力工具。2.3倒F原理及结构分析PIFA的典型结构包括一个平面的矩形金属片、一个大的接地平面、一个窄的短路金属板(置于矩形平面金属片长度较短边的边缘)。一方面,PIFA可以被认为是一个线性倒F型天线(IFA:InvertedF Antenna),将IFA的金属线辐射体替换为金属板后,频宽比原来的IFA宽。另一方面,也可以将PIFA视为一个短路的矩形微带天线,这种短路的矩形微带天线其实际共振模态与矩形微带天线的共振模态是一样的,都是共振在基本模态。将短路金属板置于辐射金属与接地平面之间时,将使矩形辐射金属的长度减半,从而达到缩小天线的目的,此时在短路会属板的位置,的电场为零。当短路金属板的宽度等于平面矩形辐射贴片的宽度时,即为“短路面加载”;当短路金属板宽度比平面矩形金属片窄时,即为“短路壁加载”,天线的有效电感增加,共振频率低于传统的短路微带天线。因此,在相同尺寸的平面矩形金属片下,要得到相同共振频率,就必须使平面矩形金属片缩小,从而达到原先将天线缩小的目的。加载短路金属板,一方面可以实现小型化,另一方面可以使整个天线的有效电感增加,谐振频率低于传统的一端短路微带天线,拓展了微带天线在频段方面的使用范围。倒F天线常用于无线通信系统中,典型的倒F天线结构如图32(b)所示。倒F天线是在倒L(如图32(a)所示)天线的垂直元末端加上一个倒L结构而构成。使用附加的这个结构可以调整天线和馈电端的匹配,不需要另外的匹配电路,简化了天线结构。倒F天线具有低轮廓结构,辐射场具有水平和垂直两种极化,这些特性对天线的设计非常重要。图2.2典型倒L和倒F形天线结构在设计印刷倒F单极天线时,我们可以通过调整天线尺寸达到工作频段所要求的理想匹配效果。一般来说,倒F天线水平单元的尺寸估算值可以由以下经验公式得到: (2.3.1) (2.3.2)其中,表示bc段的长度,为cd段的长度,C为真空中的光速,为介质板的有效介电常数,为相对介电常数,h和W分别为介质板的厚度和天线的线宽。2.4Hilbert分形结构分析Hilbert曲线作为一个连续图形不存在任何交叉点,随着分形阶数的增加,曲线通过自相似迭代从一维空间逐渐填充到二维空间,曲线具有严格的自相似性。阶Hilbert分形曲线的分形维数可以按下式计算: (2.4.1)Hilbert曲线的分形维数随曲线阶数的增加而增大,表征了分形曲线占据空间的利用率。由公式(2.2.1)可知,Hilbert分形曲线的分数维取值范NI为1,2,是一种结构简单、空间占有率高的分形结构。下面利用函数迭代系统简单描述一下Hilbert分形曲线的生成过程,如图34所示。此处,初始Hilbert分形曲线为一个二维几何结构: (2.4.2)四个隶属变换因子分别作用于初始Hilbert分形曲线,经四次迭代,依次生成l阶Hilbert分形曲线、2阶Hilbert分形曲线以及3和4阶Hilbert分形曲线。对于Hilbert分形曲线隶属变换因子集合,如令其中,s表示尺度变换矩阵,r表示旋转变换矩阵,t表示线性位移矩阵。则: (2.4.3) (2.4.4) (2.4.5)式中,为Hilbert分形曲线的阶数,为Hilbert分形曲线旋转角度,分别对应隶属变换因子集合矿中的四个元素,则Hilbert分形曲线的隶属变换因子集合为: (2.4.6)图2.3IFS生成Hilbert分形曲线的过程图2.2.1为0-3阶的Hilbert分形迭代结构。从图中可以看出,Hilbert是13等边分形曲线,若0阶Hilbert曲线各边长均为h,则n阶Hilbert曲线总长度为: (2.4.7) 由等式(2.2.7)可知,随着Hilbert分形迭代次数的增加,Hilbert曲线的长度呈指数上升,趋近于无穷大,逐渐填充整个轮廓。当迭代次数为5时,X4单极天线长度为原来的65倍,由于耦合效应的存在天线的谐振频率并没有降为原来的165而是111,但仍然具有很强的尺寸压缩能力。因此,Hilbert曲线非常适合用于小型化分形天线的设计。目前,Hilbert分形曲线已应用于VHF他HF通信的天线设计中。图2.4Hilbert分形迭代结构第3章 ADS软件的使用3.1 ADS软件简介先进设计系统(Advanced Design System),简称ADS,是安捷伦科技有限公司(Agilent)为适应竞争形势,为了高效的进行产品研发生产,而设计开发的一款EDA软件。软件迅速成为工业设计领域EDA软件的佼佼者,因其强大的功能、丰富的模板支持和高效准确的仿真能力(尤其在射频微波领域),而得到了广大IC设计工作者的支持。ADS是高频设计的工业领袖。它支持系统和射频设计师开发所有类型的射频设计,从简单到最复杂,从射频微波模块到用于通信和航空航天国防的MMIC。通过从频域和时域电路仿真到电磁场仿真的全套仿真技术,ADS让设计师全面表征和优化设计。单一的集成设计环境提供系统和电路仿真器,以及电路图捕获、布局和验证能力 因此不需要在设计中停下来更换设计工具。先进设计系统是强大的电子设计自动化软件系统。它为蜂窝和便携电话、寻呼机、无线网络,以及雷达和卫星通信系统这类产品的设计师提供完全的设计集成。ADS电子设计自动化功能十分强大,包含时域电路仿真(SPICE-like Simulation)、频域电路仿真(Harmonic Balance、Linear Analysis)、三维电磁仿真 (EM Simulation)、通信系统仿真(Communication System Simulation)、数字信号处理仿真设计(DSP);ADS支持射频和系统设计工程师开发所有类型的RF设计,从简单到复杂,从离散的射频/微波模块到用于通信和航天/国防的集成MMIC,是当今国内各大学和研究所使用最多的微波/射频电路和通信系统仿真软件软件。此外Agilent公司和多家半导体厂商合作建立ADS Design Kit及Model File供设计人员使用。使用者可以利用Design Kit及软件仿真功能进行通信系统的设计、规划与评估,及MMIC/RFIC、模拟与数字电路设计。除上述仿真设计功能外,ADS软件也提供辅助设计功能,如Design Guide是以范例及指令方式示范电路或系统的设计流程,而Simulation Wizard是以步骤式界面进行电路设计与分析。ADS还能提供与其他EDA软件,如SPICE、Mentor Graphics的ModelSim、Cadence的NC-Verilog、Mathworks的Matlab等做协仿真(Co-Simulation),加上丰富的元件应用模型Library及测量/验证仪器间的连接功能,将能增加电路与系统设计的方便性、速度与精确性。ADS软件版本有ADS2008、ADS2006A、ADS2005A、ADS2004A、ADS2003C、ADS2003A、ADS2002C和ADS2002A以及ADS1.5等。3.2 ADS的使用3.2.1微带线计算器LineCalc对于ADS 微带线计算器LineCalc,根据微带线的偶模和奇模阻抗,按照给定的微带线路板的参数,使用ADS中的微带线计算器LineCalc计算得到微带线的几何尺寸W、S、L。图3.1微带线计算器LineCalcZE Zeven即耦合线偶模阻抗ZO Zodd 即耦合线奇模阻抗Z0 指耦合线端接传输线特性阻抗(一般为50欧)C_DB用dB表示的耦合度C(dB) = 20log10 (ZE-ZO)/(ZE+ZO)E_eff 耦合线有效电长度,单位度,即相位延迟Hu 指微带线上部空间高度Mur磁导率计算耦合线时,只需按设计参数和板材条件设置即可,其中Z0选定后,输入ZO、ZE ,C_DB 是自动计算出的。点击上箭头,软件即会给出耦合线的物理尺寸,即W线宽、S耦合线间距、L耦合线长度。3.2.2 版图仿真工具Momentum ADS软件提供了一个2.5D的平面电磁仿真分析功能Momentum(ADS2005A版本Momentum已经升级为3D电磁仿真器),可以用来仿真微带线、带状线、共面波导等的电磁特性,天线的辐射特性,以及电路板上的寄生、耦合效应。所分析的S参数结果可直接使用于些波平衡和电路包络等电路分析中,进行电路设计与验证。把电路图导入到Layout界面注意事项:要关闭Term以及接地去掉,不可以让他们出现在原理图中。去掉的方法与关闭优化控件的方法相同,即使用按钮,把这些元件打上红叉。然后用Layout Generate/update Layout命令完成导入。Momentum中options preference的常用设置:网格(Grid)的间距和显示,端口(port)和地(ground)在layout中的显示大小,layout窗口背景色(background color),丝印层文字的显示大小,layout的单位(unit)等。第4章 设计说明4.1天线结构设计与分析图4.1(b)为水平单元cd段(见图32(b)被Hilbert分形结构取代的倒F单极天线。该天线印刷在厚度为16 mm的FR4介质板(相对介电常数为4.4)的上表面,而底面为接地板(注意,天线所在介质板部分的底面没有地板),如图4.1(a)所示。图4.1(b)为标签天线的俯视图,从图中我们可以看到天线的短路点a直接与接地板相连,而馈电点e直接与射频模块的匹配电路输出端相连。图4.1基于Hilbert分形结构的倒F天线结构Hilbert分形倒F单极天线的abc段可等效成电阻和电感的串联(谐振时短路,故a端可看作短路点)。dce段可等效为电容和电阻的并联(相当于负载,谐振时开路,故d端可看作开路的谐振器)。所以d端电压最大,电流为零;a端电压为零,电流最大。因此,在仿真与优化天线时,我们可以调整动和ce段的长度和线宽来实现与输出电路的匹配。4.2相关参数的计算对于单极印制天线来说,其线宽可由以下等式得到: (4.2.1)其中 (4.2.2) (4.2.3)研究表明,当Hilbert分形单极天线的馈电点在线端时,其输入阻抗实部很小。例如,尺寸为70mmx70mm的3阶Hilbert分形天线,在谐振频点处实部值仅为2。同时,文献43指出Hilbert分形天线的输出阻抗取决于馈电点到天线一个端点的距离与天线总长度的比值。对于具有同一阶数的Hilbert分形天线,无论外围尺寸和导线宽度如何变化,在馈电点位置不变的情况下,天线的输出阻抗不会改变。由于本论文所要设计的天线必须与芯片的前端电路直接连接,所以Hilbert单极天线的馈电点只能选择在线端处。为了验证文献42的结果,下面仅对1阶的Hilbert分形单极天线进行仿真分析。同样,天线印刷在厚度为1.6 mm的FR4介质板(相对介电常数为4.4)上。由(1)式可得,Hilbert分形单极天线的线宽w=15mm。根据公式(39),当n=1时,Hilbert分形曲线长度L=5h。由于耦合效应的存在,Hilbert天线的长度L并不等于。取初始值h=7mm,则Hilbert曲线L=35mm。经计算各单元的尺寸如下:,。4.3 天线设计4.3.1绘制版图启动ADS进入如下界面图4.2ADS启动界面点击FileNew Project设置工程文件名称(本设计为biyesheji)及存储路径图4.3创建工程对话框工程创建完毕后主窗口变为图4.4图4.4 ADS主窗口同时版图打设计开为图4.5 新建版图设计直接在Main窗口中点击,打开Layout窗口,在Layout中,选择option-preference,对系统设计的背景参数 进行设置。我们选择其中的Layout Unit ,设置如图4.6,选择Layout Unit为mm,Resolution填写为0.0001表示精确到小数点后四位。以确保在天线设计过程中的精度。其他子菜单设置一般选择默认。 图4.6 Layout Unit窗口因为我们设计的是贴片天线,所以在介质板上只有一层,设计cond层,如图4.7图4.7选择层窗口在Layout中绘制天线。由于我们设计的矩形天线,所以我们选择 ,然后在窗口中选择一点,开始画矩形,矩形大小的控制可以看右下角的右边的坐标,它表示相对位置的距离。同样,点击鼠标右键的“measure”,可以测量相对尺寸,如图4.8所示:图4.8天线尺寸测量经过绘制倒F天线的全图如下图4.9所示:图4.9 倒F天线在Layout中的全貌1选择:Option=>Layers,将cond的Shape Display由filled改为outlined,这样便于测