高中数学片段教学教案.pdf
片段教学教案模板数学(多篇)片段教学教案模板数学(多篇)第 1 篇:高中数学片段教学教案高中数学片段教学教案【篇 1:教学片断与案例】教学片断与案例1、综合法和分析法的一个教学片断师:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的观察、思考下列证明过程各有什么特点?它们是以怎样的形式使结论获证的?引例 1 已知 a,b0,求证 a(b+c)+b(c+a)4abc证明:因为 b+c2bc,a0,所以 a(b+c)2abc,因 为c+a2ac,b0,所 以b(c+a)2abc.因 此,a(b+c)+b(c+a)4abc.引例 2 已知 a,b r,求证:证明:要证+_-_-_a+b 2a+b a+b,2只需证 a+b-0,只需证 20因为 20 显然成立,所以原不等式成立a,b,c0 引例 3 已知 a+b+c0,ab+bc+ca0,abc0.求证:证:设 a0,abc0,bc0又由 a+b+c0,则 b+c=-a0ab+bc+ca=a(b+c)+bc0,与题设矛盾又若 a=0,则与 abc0 矛盾,必有 a0.同理可证:b0,c0设计意图:通过三种证明方法案例的展示,引导学生观察、比较、辨析、思考三种证明方法的形式、特点,为归纳、抽象、概括三种证明方法提供感性认识,也为理解不同证明方法的表述形式打下基础引例 1、2 的方法是本课要学习的重点内容,引例 3 的方法(反证法)是下一课的学习任务,在此给出引例 3 有两方面的作用,一方面,让学生对不同方法有一个整体认识与了解,另一方面,为下一课的学习作好铺垫 对三个引例,引导学生分两个层次比较、归纳第一层次的比较,是否直接针对结论进行证明?得出直接证明与间接证明;第二层次的比较,是引例1、2 之间,证明的起点及逻辑推理形式,由此可引导学生归纳、概括出本课重点学习的两种方法:综合法与分析法 2、归纳探索的一个教学片断问题情境:(河内塔游戏)传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的 64 个圆环.古印度的天神指示他的僧侣们按下列规则,把圆环从一根针上全部移到另一根针上,第三根针起“过渡”的作用.每次只能移动 1 个圆环;较大的圆环不能放在较小的圆环上面.如果有一天,僧侣们将这 64 个圆环全部移到另一根针上,那么世界末日就来临了.请你推测:把 64 个圆环从 1 号针移到 3 号针,最少需要移动多少次?启发性思考:首先,你是否理解了这个问题?是否理解清楚了圆环的移动规则?是否明白了问题要求什么?然后,你打算怎样考虑这个问题?能否把问题化简单、化容易一些?怎样的情况会更简单、更容易呢?(为归纳作准备,逐步形成归纳意识)这一系列的启发性思考问题,在于引导学生在面对一个新问题或较难的问题时,首先要准确理解好问题,然后学会寻找问题的切入点生成预设:片数较少的情况会更简单、更容易,先考虑片数较少的情况,看看 1 片、2 片、3 片、。,等情况,再找找方法规律或联系,考虑解决更难、更一般的情况.操作实验:(1)可先让学生进行适当的思想实验,想明白1片、2 片、3 片时的情况,并引进符号 an 表示 n 片圆环的移动次数;(2)再用课前备好的四个大小不一的圆环,让两位学生对2 个、3 个、4 个圆环的情况分别进行实际操作试验,其他学生注意观察并思考规律生 成 预 设:(1)表 面 的 试 验 观 察 结 果 可 能 只 是a1=1,a2=3,a3=7,a4=15,,进而发现规律1=21-1,3=22-1,7=23-1,15=24-1,。,猜想 a64=264-1(2)更 进 一 步 的 试 验、观 察 可 能 发 现:a1=1,a2=1+2,a3=1+2+4,a4=1+2+4+8,即:对于两个圆环,底下一个只要移动 1 次,上面一个则要移动 2 次;对于 3 个圆环,由下到上,第1 个只要移动 1 次,第2 个需要移动 2 次,第3 个则要移动 4 次;对于 4 个圆环的情况可作同样解释进而猜想 a64=1+2+22+263=264-1(3)更深入的试验、观察、思考可能发现更本质的移动规律,在理性的层面上解决问题:移动 n 个圆环时,只要化归为移动 n-1 个圆环即可,第一步,先把上面的 n-1 个圆环按要求移到2 号针上,需移 an-1 次;第二步,把最底下的第 n 个圆环移到3 号针上,需要移1 次;第三步,再把2 号针的 n-1 个圆环移到3 号针,需要再移 an-1 次,从而得 an=2an-1+1,这样就可依次求得各种圆环数的移动次数,或转化为等比数列an+1=2(an-1+1),结合 a1=1,求得通项 an+1=2?2n-1,即 an=2n-1移动 3 个、4 个圆环的情况,学生可能会有一些困难要根据学生的实际情况,给予适当的点拨、提示,或质疑启发(1)缺乏思维指导的学生可能只是盲目地、孤立地试验各种情况,这样,要试验求出a3、a4 就更困难,而求出a3、a4 对于归纳猜想又是关键所在(2)预设(2)体现了更进步的观察、归纳,是注意到试验中每个圆环的移动次数规律性,从这样的角度,可能更有利于得出 a3、a4(3)预设(3)则体现了更深的理性思考,这要从联系与转化的角度进行观察、思考让学生进行实际的试验操作,给学生以感性体验,并通过动手操作,促进思维领悟,这也体现了一种思维训练,在这过程中,也能体现学生不同的思维层次与多种思维品质,对激发学生的探究兴趣也可能有积极的作用另外,从省时的角度,也可考虑运用多媒体课件进行移动圆环的演示实验,并引导学生进行观察、思考,这种技术手段同样能产生较好的直观效果,也有利于学生的观察发现,但这种观察有一定的被动性在教学中,如何挖掘不同层次的学生思维潜能,让学生感受不同角度、不同层次的观察、思考,归纳、概括,是值得我们教师下功夫的地方,相信这对学生的思维训练是大有好处的 3、案例案例 1:头上戴的帽子的颜色(华罗庚的例子)有位老师,想辨别他的 3 个学生谁更聪明他采用如下的方法:事先准备好3 顶白帽子,2 顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的 2 顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。聪明的你,想想看,他们是怎样推算出来的呢?他们怎样能够从别人头上帽子的颜色,正确地推断出自己头上帽子的颜色的呢?“为了解决上面的伺题,我们先考虑“2 个人,1 顶黑帽,2 顶白帽”问题因为,黑帽只有 1 顶,我戴了,对方立刻会说自己戴的是白帽但他踌躇了一会,可见我戴的是白帽这样,“3 人 2顶黑帽,3 顶白帽”的问题也就容易解决了 假设我戴的是黑帽子,则他们 2 人就变成“2 人 1 顶黑帽,2 顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3 人经过同样的思考,于是,都推出自己戴的是白帽子看到这里。同学们可能会拍手称妙吧后来,华罗庚还将原来的问题复杂化,“n 个人,n-1 顶黑帽子,若干(不少于 n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃简化问题:有位老师想辨别他的二个学生谁更聪明.他采用如下的方法:事先准备好两顶白帽子,一顶黑帽子,让学生们看到,然后让他们闭上眼睛.老师给他们戴上帽子,并把剩下的那顶帽子藏起来.最后让学生睁开眼睛,看着对方的帽子,说出自己所戴帽子的颜色.两个学生互相望了望,犹豫了一小会儿,然后异口同声地说:“我们戴的是白帽子”.聪明的各位,想想看,他们是怎么知道的?这里的思维方式就是推理.案例 2:探索活动是如何进行的?(华罗庚的例子)面对着一个装有不明物的袋子,观察者问自己,这袋子里装的是什么?于是探索活动开始了。从一个袋子里摸出的第一个是红玻璃球,第二个是红玻璃球,甚至第三个、第四个、第五个都是红玻璃球的时候,我们立刻会出现一种猜想:“是不是这个袋里的东西全部都是红玻璃球?”但是,当我们有一次摸出一个白玻璃球的时候,这个猜想失败了;这时,我们会出现另一种猜想:“是不是袋里的东西全都是玻璃球?”但是,当有一次摸出来的是一个木球的时候,这个猜想又失败了;那时,我们又会出现第三个猜想:“是不是袋里的东西都是球?”这个猜想对不对,还必须继续加以检验,要把袋里的东西全部摸出来,才能见个分晓。袋子里的东西是有限的,迟早总可以把它摸完,由此可以得到一个肯定的结论,但是,当东西是无穷的时候,那怎么办?如果我们有这样的一个保证:“当你这一次摸出红玻璃球的时候,下一次摸出的东西,也一定是红玻璃球”,那么,在这样的保证之下,就不必费力去一个一个地摸了。只要第一次摸出来的确实是红玻璃球,就可以不再检查地作出正确的结论:“袋里的东西全部是红玻璃球”。华罗庚举的这个例子,是对简单枚举归纳推理结论性质的一个通俗说明。人们应用简单枚举归纳推理,当然可以从为数不多的事例中推导出普遍的规律性来,然而这还是一个“猜想”。这种猜想对不对,还必须进一步加以验证。因为对于不完全归纳推理来说,结论所断定的范围超过了前提所断定的范围,所以,它的结论就不具有必然性,它可能真,也可能假。从一个袋子里摸球,连续摸了五次,摸的都是红玻璃球,这时候,我们可以通过简单枚举归纳推理得出结论:“这个袋子里装的都是红玻璃球。”但是,你在得出这个结论时,必须清醒地认识到这个结论是不可靠的。正如这个例子所表明的,你第六次摸出的,却是白玻璃球了,这就把你的这个结论推翻了。因此,当你摸了六个球时,虽然可以得出“这个袋子里装的都是玻璃球”的结论;摸第七个球时,可以得出“这个袋子里装的都是球”的结论,但必须明白,这些结论同样都是或然的。总而言之,我们在进行简单枚举归纳推理时,必须充分估计到其结论的或然性。案例 3:我国地质学家李四光发现中国松辽地区和中亚细亚的地质结构类似,而中亚细亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油;案例 4:三角形的内角和为,四边形的内角和为,五边形的内角和为,。,所以边形的内角和为;【篇 2:人教版高中数学组合全国一等奖教学设计】组合教学设计(第一课时)一、教材分析本节课的教学内容是选修 2-3(人教 a 版)1.2.2组合第一课时本节内容是两个计数原理及排列知识的延续,也是后续学习二项式定理,研究二项式系数性质及求等可能事件概率的基础,因此本节课在整个章节中起了承上启下的重要作用。本节课主要是借助学生身边的例子,类比排列的知识探究组合的定义、组合数的定义、组合数计算公式及组合数的性质,并从具体情境中体会排列与组合的区别与联系。通过对组合教学的探究,让学生体会类比,从特殊到一般等重要数学思想的应用以及数学来源于生活又服务于生活的课程理念。二、学情分析从学生的现有知识水平看,在学习本节前,学生已学习了两个基本计数原理、排列。绝大多数学生能正确运用两个计数原理,能正确理解排列、排列数的概念,能比较熟练地应用排列数公式进行计算。还能遵循先特殊后一般、先取后排、先分类后分步的原则,解决典型的排列问题。因此在本节课教学要借助这些已有的知识,通过观察、分析、类比、归纳,帮助学生理解组合的概念;从能力的角度看,学生已经具备了一定的分析问题的能力、思考的能力、探究的能力、计算的能力、数学表达的能力,教学中要借助学生已有的能力,提供实际问题情境,引导学生进行分析,向学生提供合适的探究材料,引发学生的主动探究,借助小组讨论、合作交流,全班展示等活动培养学生的自主学习、合作学习及数学表达能力。三、设计思想组合是继排列后的又一特殊的计数模型,是计数问题的延续与拓展。本节课我的设计理念是:以问题为载体,以学生为主体,创设有效问题情境,努力营造开放、民主、和谐的学习氛围,充分调动学生的兴趣与积极性。让学生在经历“自主、探究、合作”的过程中,体验从生活中发现数学,并通过观察、分析、对比、归纳、猜想、证明、展示、交流等一系列思维活动,在教师的适当引导、组织下主动地建构数学知识的过程。同时注重渗透“特殊与一般”、“分类讨论”、“转化与化归”等重要数学思想及类比的学习方法,让学生掌握知识的同时提升数学素养与思维品质,真正做到“授之以鱼不如授之以渔”。四、教学目标 1、知识与技能:正确理解组合、组合数的概念;会利用排列与组合的关系推导组合数公式;初步掌握组合数的性质;2、过程与方法:借助学生生活中熟悉的例子创设问题情境,学生通过对实际问题的探究、思考、对比、分析,初步形成组合、组合数的概念;用类比、归纳的思想得出组合、组合数的概念,并深刻体会组合、排列的区别与联系;通过小组讨论、交流合作、成果展示等活动,才用类比、特殊到一般的思想探究推导组合数公式并能进行简单应用;从组合数的计算中观察、归纳、猜想得到组合数的性质并进行简单的应用。3、情感态度与价值观:学会用联系的观点看问题,培养良好的个性品质及团队合作意识;让学生充分感受到数学来源于生活又服务于生活,提高应用数学的意识。五、教学重点:组合的概念、组合数公式、组合数的性质 六、教学难点:组合数公式的推导.七、教学方法:启发、引导、自主、合作、探究【篇 3:2.2.2 对数函数及其性质片段教学教案】2.2.2 对数函数及其性质片段教学(第一课时)教案一、教学目标1、知识技能(2)掌握对数函数的图像和性质,并进行简单的应用。2、过程与方法(1)形成数学交流能力和与人合作意识;(2)用联系的观点提出问题、分析问题、解决问题;(3)从对数函数的学习中渗透数形结合、类比归纳、分类讨论的数学思想。3、情感、态度与价值观(1)类比指数函数通过图像研究对数函数的图象和性质,体会知识之间的有机联系,激发学习兴趣.(2)在教学过程中,对对数函数有关性质的研究,形成观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时形成倾听、接受别人意见的优良品质.二、教学重难点重点:对数函数的图象和性质。难点:对数函数性质。三、教学过程教学环节教师活动学生行为教学前准备1、复习指数函数的图像与性质(见附录),并做成表格放在ppt 上;2、复习指数与对数的互化:;3、通过互化引出对数函数的概念:一般而言,函数叫对数函数,其中是自变量,函数的定义域.;4、教师引导学生从具体到一般做出对数函数图像。注:片段教学是在学生已经掌握了课前准备的内容基础上进行的,故课前准备的内容不会在课堂上操作。无对数函数的图像与性质活动 1:在课前准备的内容的基础上,通过联系对数函数的概念是由指数函数化过来的,以及可以通过图像来研究指数函数的性质引导学生探究对数函数性质:图象性质定义域:值域:过点在上是增函数在上是减函数1、能够自然说出对数函数的定义域、值域、单调性、奇偶性和定点(0,1);2、通过老师引导能够发现函数图像与 x=1 的关系。(时间为5 钟)对数函 数性质的应用活动 2:通过让学生比较大小,学会应用对数函数的性质活动 2.3:1、学生在练习本先计算;2、老师讲评,规范步骤;3、通过认识逐步掌握数学中分类讨论的思想。归纳小结活动 3:教师课堂小结:引导学生从知识、方法、思想三个方面进行总结然后归纳:1知识:对数函数的图象和性质。(再次重复,并与指数函数比较以单调性为例)2方法:(1)类比指数函数通过图像研究函数性质;(2)同底对数比较大小考察对应函数的单调性。3 思想:(1)数形结合的数学思想;(2)分类讨论的数学思想。通过老师的引导对本节课进行小结(两分钟)课后作业1阅读教材第 7072 页;2课本习题 2.2a 第 2、7 题3、做对数函数与指数函数的对照表,归纳它们的异同4 探究底数是如何影响函数的?学生课后自主完成作业(1 分钟)四、板书设计五、附录指数函数图像与性质图象性质 定义域:值域:过点在上是增函数在上是减函数第 2 篇:数学片段教学怎样进行数学片段教学所谓片段(片断)教学,是相对于一节完整的课堂教学而言。一般说来,截取某节课的某个局部的教学内容,让教师进行教学,时间大致限定在十来分钟。也就是说,片段教学只是教学实施过程中的一个断面,执教者通过完成指定的教学任务,来表现自己的教学思想、教学能力和教学基本功。区分片段教学与正常的课堂教学。前者是局部的、虚拟的,功用是教研或评价,听课者是领导、同行或专家、评委;而后者是整体的、实际的,功用是“传道受业解惑”,听课者是学生。一、数学片段教学的类型1.节选型是从教材中选取某些片段进行教学,教者根据节选的内容确定教学目标,设计教学方案,然后实施课堂教学。2.专题型从某节课中抽取一个专题(或一个知识点、能力点,或一个教学环节)让教师施教,教者以此为目标进行教学。3.实境型实境型片段教学为教者提供真正的课堂,教者可以面对学生进行教学 4.虚境型虚境型则只能面对评委或参加教研活动的老师进行模拟教学,由于虚境型片段教学不为时空所限,操作方便,所以尽管有脱离学生主体之弊,但在事实上更频繁地被使用。5.自定型自定型是由教者自己选择片段教学的内容 6.他定型他定型则由他人(专家、评委、组织者)指定选题,教者按要求进行片段教学教研活动多采用自定型片段教学,事先做好充分的准备,有利于开展教研活动,展示教师的风采。竞赛活动和评价工作多采用他定型片段教学,临时抽签,当场限时准备,依次上课,以检测教师的素质和教学水平,能够比较客观地评判其高下优劣。二、数学片段教学的基本特征1.实践性这是片段教学最基本也是最重要的特征,因为从本质上说,片段教学就是一次教学实践活动。如果说课是教者向听众展示其对某节课教学设想的一种方式,重点在于比较系统地介绍教学设计及其理论依据,那么片段教学就是将此教学构想具体化实践化的过程,目的在于体现其教学设计的合理性、可行性和实效性。因此片段教学将课堂教学实践与教育教学理论有机的结合起来,做到实践与理论的统一。2.完整性片段教学相对而言在内容上只是局部的,因此这里所谓的完整性是指教学步1 骤的完整。因为片段教学不是宣讲教案,也不是浓缩课堂,而是如同平时授课那样实现教学重点和教学难点的突破,完成教学目标,所以要求进行片段教学时候也要有清晰而又完整的教学步骤实施过程。另一方面,片段教学也要确定教学重点和难点,也要进行教学设计,然后才是课堂实施,这一过程同样也表现了完整性。3.虚拟性这是虚境型片段教学所具有的一种特征。因为这种片段教学虽然在本质上是教学活动,但又与正常的教学活动有所不同,平时教学实践的实施对象是学生,而虚境型片段教学面对的却是同事、同行,甚至是评委,因此在教学实施过程中就带有浓重的虚拟色彩。4.预设性由于虚境型片段教学不可能面对真正的学生,学生的发言、学生的活动、师生的交流根本没有办法进行,而片段教学的虚拟性又决定这些是必不可少的,因此教师只有加以预设,片段教学才能顺利进行。这就要求教师不但要做到眼中有学生,还要做到心中有课堂,按预设进行有声有色的虚拟教学。三、怎样进行数学片段教学1.表现崭新教学理念(1)教学目标根据三维目标来确定;(2)教学方法采用启发式、讨论式,发挥学生的主体作用,倡导自主、合作、探究的学习方式;(3)教学内容采用新视角挖掘教材,体现新课程理念下的教学价值取向。(4)注重片段教学设计吃透教材有的放矢,从容不迫;教学过程合理流动,有条不紊,富有层次感;设计内容导入设计、问答设计、活动设计、板书设计等。2.善于虚拟教学情景虚拟教学情景可以通过教师的口头语言、肢体语言、间歇停顿等来建构,再现真切的教学情景,忌用提示语加以说明。可以虚拟争论,虚拟质疑,虚拟辩论,虚拟活动等情景,使课堂教学师生互动,生生互动,给人置身其境的感觉。3.注重运用教学语言片段教学要像上课那样,有声有色,灵活多变,前后连贯紧凑,过渡流畅自然。要把听课的人看成是自己的学生,有问有讲,有读有说,用自己的语言变化将他们带入你的课堂教学中去,使之未进课堂却仿佛看到你上课的影子,感受到你的课堂教学效果。4.调整好自己的心态片段教学中的角色与说课中的角色不同,与讲课中的角色也不尽相同,这种角色的移位需要教者迅速适应,而且在片段教学实施过程中因其虚拟性也需要较强的表演能力。因此片段教学时应有较强的应变能力,能够及时调整自己的心态,让自己尽快地进入片段教学的角色里去。5.努力展示自身素质(1)用数学特有的语言来表现自己的教学思想(2)用数学特有的思维变式来表现自己的教学能力2(3)用数学特有的提问方式来表现自己的驾驭教学的能力(4)用数学特有的板书来表现自己的书法功力(5)用数学特有的内涵广征博引来显示自己的知识面(6)用自然的教态、饱满的精神、洋溢的激情,去获取评委的好感四、片段教学必备条件1.教学目标明确,能以局部目标体现整体教学的三维目标2.教材分析透彻,能正确认识所选片段在教材中的地位、作用,确定教学重点、难点,挖掘教材资源,选好教学的切入点和突破口。3.教法科学实用,总体设计合理、有新意、有独立的见解,能实现教学目标。导入、转换、结束等教学环节和重点、难点突破符合学科特点,能调动学生的学习积极性。板书设计精要、简洁、艺术。4.教学对策恰当,对学生学习本课的原有基础和现有困难分析准确,采取的教学对策有助于学生克服学习困难和心理障碍。5.能力训练到位,训练目的明确、具体,与本课的教学目标一致。训练设计面向全体,体现层次性。训练方法得当,有助于学生能力的形成和思维品质的培养。第 3 篇:三年级数学教学片段教学教案假设求解【六年制三年级】题目:小麦斯家有一些苹果和桔子,苹果的个数是桔子的 3 倍,爷爷和奶奶每天各吃一个苹果,小麦斯每天吃一个桔子,若干天后苹果还剩下 8 个而桔子刚好吃完,原来苹果有多少个?这题初看无从下手,但我们可以用假设法依照已知条件来进行推算:因为苹果的个数是桔子的 3 倍,所以我们可以假设每天各吃 3 个苹果、1 个桔子,在若干天后两种水果正好吃完。而现在爷爷和奶奶每天各吃一个苹果,也就是每天吃 2 个,比假设时少吃 32=1(个),结果若干天后苹果还剩下 8 个而桔子刚好吃完。所以用 81=8(天)可以求到吃的天数,用 82+8=24(个)就能求到原来苹果的个数。自我探索:1、三(5)班的白粉笔是彩色粉笔的6 倍,每天用去3 盒白粉笔和 1 盒彩色粉笔,当彩色粉笔刚好用完时白粉笔还剩下 12盒,原来白粉笔有多少盒?2、小亮家苹果的个数是桔子的 5 倍,每天吃 3 个苹果和 1个桔子,当苹果还剩下 8 个时桔子全部吃完时,原来苹果有多少个?奇怪的年龄【六年制三年级】张老师出示题目:祖孙三代的年龄加在一起正好是 100 岁,祖父过的年数正好等于孙子过的月数,儿子过的星期数正好等于孙子过的天数,问祖父、儿子、孙子各多少岁?小马虎:这道题中的已知条件连数字都没有,怎么做呀?张老师:假如你不知道如何求解,可以看看能不能从已知条件中知道祖父、儿子、孙子他们各有多少份呢?小麦斯:已知条件中知道祖父过的年数正好等于孙子过的月数,所以不管祖父是多少岁,孙子的年龄要乘 12(一年 12 个月)才能和爷爷一样大。也就是说祖父的年龄是孙子的 12 倍,祖父相当于 12 份,孙子是 1 份。再根据第二个已知条件可以知道,儿子的星期数=儿子的年龄 3657,孙子的天数=孙子的年龄365。而因为这两个算式是相等的,所以儿子的年龄就是孙子的7 倍,儿子是 7 份,孙子是 1 份。既然他们各自的份数已经求出来了,年龄也就非常好求了。张老师:小麦斯能够抓住条件、找准解题的突破口,从而巧妙求解,可真了不起!小朋友们,你还有其他的方法吗,试试看!动手剪一剪【六年制三年级】题目:将一张边长为 24 厘米的正方形纸,剪成 4 个完全一样的小正方形,这 4 个小正方形周长之和比原来的正方形周长增加了多少厘米?方法一:将这个正方形沿水平方向剪一刀,这时分成的两个小长方形的周长和就比原来大正方形的周长增加 2 个边长;再沿竖直方向剪一刀,又增加 2 个边长,一共增加 22=4(个)边长,4个小正方形的周长和比原来的正方形周长增加了 24 4=96(厘米)。方法二:将这个正方形沿水平方向和竖直方向各剪一刀,这时大正方形就变成了 4 个小正方形。这 4 个小正方形的周长和比原来的正方形周长增加了 24=8(个)小边长,这8 个小边长相当于 4 个大边,所以这 4 个小正方形的周长和比原来的正方形周长增加了 244=96(厘米).方法三:还是将这个正方形沿水平方向和竖直方向各剪一刀,这时分成的 4 个小正方形的周长和比原来的正方形周长增加了 8 个小边长,每个小边长为 242=12(厘米),所以一共增加了 128=96(厘米)。小朋友们,你还有其他的解法吗?巧妙求解题目:将一张边长为 24 厘米的正方形纸,剪成 4 个完全一样的小正方形,这 4 个小正方形周长之和比原来的正方形周长增加了多少厘米?方法一:将这个正方形沿水平方向剪一刀,这时分成的两个小长方形的周长和就比原来大正方形的周长增加 2 个边长;再沿竖直方向剪一刀,又增加 2 个边长,一共增加 22=4(个)边长,所以 4 个小正方形的周长和比原来的正方形周长增加了 24 4=96(厘米)。方法二:将这个正方形沿水平方向和竖直方向各剪一刀,这时大正方形就变成了 4 个小正方形。这 4 个小正方形的周长和比原来的正方形周长增加了 24=8(个)小边长,这8 个小边长相当于 4 个大边,所以这 4 个小正方形的周长和比原来的正方形周长增加了 244=96(厘米).方法三:还是将这个正方形沿水平方向和竖直方向各剪一刀,这时分成的 4 个小正方形的周长和比原来的正方形周长增加了 8 个小边长,每个小边长为 242=12(厘米),所以一共增加了 128=96(厘米)。自我探索:把一个边长 40 厘米的正方形剪成 6 个完全一样的小长方形,这 6 个小长方形的周长和与原来的正方形相比增加了多少厘米?换种做法更容易【六年制三年级】题目:三(5)班数学、英语考试,英语得 100 分的有 10 人,数学得 100 分的有 12 人,两门都得 100 分的有 3 人,两门都没得 100 分的有 26 人,三(5)班有多少人?我们可以用“”表示人,用“”表示左手,用“”表示右手。英语得 100 分的伸出左手,数学得100 分的伸出右手(如图1)。根据条件“两门都得 100 分的有 3 人”,因为这 3 个人已经包含在一门得 100 分的人里面,所以我们可以让人两手齐伸,把图 1 变成这样(如图2)。这样,从图2 我们可以看出一门得 100 分的和双门得 100 分的一共有 19 人,再加上两门都没得 100 分的 26人,三(5)班一共有 19+26=45(人)。小朋友们,你还有其它的方法吗?巧制“抽屉”解难题 森林学校要招聘图书管理员,应聘者一个个纷纷落马,最后出场的小松鼠心里七上八下。这时妈妈走过来,鼓励他说:“孩子,要有信心,我相信经过你的努力,一定会成功。”听了这话,小松鼠深吸一口气,稳了稳神,蹦蹦跳跳进了考场。一眼望过去三位考官山羊伯伯、猫头鹰大叔、狮子大王正表情严肃地坐在那儿,在考场的中央摆满了各种各样不同形状的格子,有圆形、正方形、长方形、三角形等等。小松鼠纳闷了,放这么多格子干嘛?这时,耳边忽然响起了山羊伯伯慈祥的声音:“小松鼠,你是最后一个选手了,不要紧张,慢慢考。首先,让你来熟悉一下我们森林图书馆的情况:我们森林学校图书馆的图书是按图形的形状来分类的,现在每本书的书脊都有应放的图形的形状,现在请你在五分钟之内将这些图书分别装在相应的格子里。准备好了吗,好!计时开始。”小松鼠来不及多想,就急急忙忙地按要求将图书一一分好。“分得真是又快又准确,真棒!”山羊伯伯竖起了大拇指。擦了擦满头的汗,小松鼠吁了一口气,可转念一想,刚刚第一关就这样紧张,不知道下面是什么样的难题?这时,猫头鹰大叔用鼠标在大屏幕上点击出了一道题:森林学校图书馆有许多故事书、历险记和连环画,每个小动物任意选两本,那么,至少应有几个小动物才能保证有两个或两个以上小动物所选的书相同?小松鼠傻眼了,这该怎么做呀?它越想越急,越急越做不出来,刚要泄气,忽然,它发现这实际上不就是抽屉原理的题目吗?于是,它找到“抽屉数”,很快地就求出了是:3+2+1+1=7(位)。它高兴地大声说出答案,猫头鹰大叔欣慰地点了点头。“小松鼠,你已经顺利过关,即将成为我们森林学校图书馆中的一员了,恭喜你!”狮子大王一改严肃的面容,笑眯眯 地说道。“成功了!”小松鼠高兴地跑出考场,它要告诉妈妈,是信心和智慧使它战胜了难题,获得了成功。新龟兔比赛经历了第一次比赛失利的耻辱之后,兔子下定决心血耻,它发誓要和乌龟再比一次,可怎样才能比赢呢?兔子冥思苦想:我的长处是蹦和跳,特别适合爬楼梯,所以就和它比赛爬五十层的“森林大厦”。乌龟本来爬得就慢,让它去爬一层一层的楼梯,就更慢了。这回,我一定要抓住机会,向大家证明我们兔子家族是最棒的!兔子在打好了小算盘之后,抱着必胜的决心向乌龟挑战,乌龟爽快的接受了。比赛的日子就快到了,兔子憋足了劲进行起跑、蹦跳、拐弯等强化训练。可乌龟并没有训练,只是在楼梯旁边的一扇门里进进出出。终于,比赛的日子到了,森林里的动物们都来到“森林大厦”观看比赛。大家都为乌龟捏了一把汗,可乌龟呢,神情泰然,甚至还微笑着朝大家点头致意。随着发令枪一响,兔子撒开了腿一溜烟地窜了上去。而乌龟依然不紧不慢,它登上楼梯旁边的一个门口,轻轻地按了一下按钮,“噌地”一声就如同离弦之箭似的冲了上去。大家这时候才恍然大悟,原来乌龟用的是电梯,动物们议论纷纷,聪明的小松鼠说:“把它们上升的路线结合起来,实际上就是 501=49(个)三角形。乌龟的路线呈一条直线是三角形的底边,兔子的路线呈八字形上升是三角形的两个腰,相比之下乌龟的路线显然比兔子短多了”话正说着,电梯中乌龟一瞬间已经升到半空了。而兔子因为走的路曲折迂回,早已累得气喘吁吁,腿都快挪不动了。不一会儿,乌龟到达了五十楼,早就等在那儿的山羊伯伯将冠军的手高高地举了起来,动物们一片沸腾,而兔子被乌龟远远地甩在后面,离终点还远着呢!这一次乌龟不再以恒心取胜,而是运用数学智慧获得了成功。新龟兔赛跑 经历了第一次比赛失利的耻辱之后,兔子下定决心血耻,准备再战一次。它想:上次是我太大意了,让乌龟钻了个空子。这次再战我一定会记住上次失败的教训,集中精力将比赛进行到底。于是已做好起跑、蹦跳、冲刺等强化训练的兔子抱着必胜的决心向乌龟挑战,乌龟爽快的接受了。第 4 篇:片段教学教案片段教学教案(精选多篇)夜莺的歌声一、简介时代背景,导入1941年6月,德国法西斯在已经占领了欧洲许多国家之后,突然进攻苏联。苏联人民开始了卫国战争。在奋起保卫祖国的战斗中,苏联的敌后游击队非常活跃,积极配合红军奋勇作战,涌现了许多可歌可泣的动人故事。本文记述的就是这无数事例中的生动一例。二 初读课文,整体把握1 快速浏览课文 思考“夜莺”指的是谁?“夜莺的歌声”什么意思?2 找出课文中军官和小男孩的对话3 标记处小男孩是如何将信息传达给游击队员的三 理解,分析课文1 分角色朗读课文中的对话2 思考从军官和小男孩的对话中,你听出了什么端倪?军官是否聪小男孩口中得到了他想要的答案。为什么?你从那看出来的。3 指名读两人间的对话村子里就剩你一个人了吗?“怎么会就剩下我一个?这里有麻雀、乌鸦、猫头鹰,多着呢。夜莺倒只有我一个!”我是问这里有么有人?“人哪?战争一开始这里就没有人了”,大家都喊:“野兽来了,野兽来了”。指名读句子“他有时候学。”,此时,他学夜莺唱是为了什么?他还用了哪些办法麻痹敌人?小组读第二部分。四 学习课文,理解传递情报的过程1、小声自由地读课文第三部分,边读边思考,用自己的话来回答。2、读“夜莺的歌声越来越响了。”歌声的作用是什么?3、小男孩是如何传递信息的?4、从“如果我们。不要忘了。”这句话中,你能体会到什么?五 总结 体会思想感情孩子面对凶恶的敌人,难道他不害怕吗?如果是你你会害怕吗.?孩子的举动,以及巧妙地对付德国军官的问话,体现了小男孩怎样的品质,及思想感情。如果,这个小男孩来到你面前,你想对他说什么?触摸春天1、在去年的广州亚残运会上,中国体育代表团取得了枚金牌、枚奖牌的优异成绩,名列金牌榜和奖牌榜首位。一群残疾人做出了许多正常人也做不到的事,真是一个奇迹。有个盲女孩也创造了一个奇迹,让我们跟随着她一起去触摸春天吧!2、请大家自由读课文,找一找,安静创造了什么奇迹?前排这位眼睛亮晶晶的女孩,请你说说。哦,原来,安静拢住了一只蝴蝶。课文哪里告诉了我们答案?好,让我们一起来看这句话安静的手悄然合拢,竟然拢住了那只蝴蝶,这真是一个奇迹!如果,当时你就在那儿,看到眼前的情景,你会说真是不可思议!太奇妙了!怎么可能呢?是呀,睁着眼睛的蝴蝶被这个盲女孩神奇的灵性抓住了,真是不可思议,真是难以置信。千言万语,浓缩成一个词,这真是一个奇迹。谁来读一读这句话,把感叹的语气读出来。现在大家都是安静,请闭上眼睛,伸出双手,跟着老师的声音来做动作,想象。“安静的手指悄然合拢,?没有体验过的地方。”你体会到了什么?这真是一次全新的经历。孩子们,拿起书,齐读第4 段,让我们来享受这份奇妙的感觉。3、为什么安静能拢住蝴蝶呢?请大家默读第 3 段,看看安静是怎么拢住蝴蝶的。我发现有的同学边默读边动笔圈划,这种动笔默读书的习惯真好。坐在后边的那位男孩,你来说说。很好,你找到了关键句子“这个小女孩,整天在花香中流连。”流连,理解吗?是啊,安静是整天在花香中流连:早晨,她学生接读:在花香中流连;中午,她学生接读:在花香中流连;下午她还在学生接读:在花香中流连。从“流连”中,你看到了一个怎样的女孩?这种对春天的热爱、对大自然的热爱,赋予她神奇的灵性。正是有了这份灵性,安静在花丛中穿梭?正是有了这份灵性,在花香的引导下?正是有了这份灵性,睁着眼睛的蝴蝶?4、同学们虽然安静是盲童,但她的内心世界却是那么那么多姿多彩。海伦凯勒曾说“世上除了用眼晴看世界,还有一种内在视觉,那可能是更真实的,那就是用心去看世界。”与其说安静拢住蝴蝶,不如说她是在触摸春天。其实,安静何其只是在触摸春天呢?她更是用心在拥抱春天。让我们在音乐声中轻声读一读课文,再次享受一个盲童在花丛中用手、用心灵来感受美好春天的故事。从百草园到三味书屋片段教学教案百草园占据了我童年丰富多彩的记忆,这座儿时的乐土究竟有什么值得我如此留恋的呢?今天这堂课我们就来跟随着鲁迅先生的笔端,一同揭晓答案。我们知道,第二段作者就开始浓墨重彩地描写“我的乐园”百草园之景,那么作者是如何为我们呈现出这种乐景呢?“点面结合”1、请同学们在文中划出具有代表性的“关联词”,并说说这些关联词的作用何在。明确:“不必说,也不必说,单是,就”等等。2、那么,这一组关联词,强调的是“两个不必说”呢,还是“单是”后面的内容呢?明确:从字面上,我们就可以知晓这里强调的是“单是”后面的内容。引申:如果说“单是”是集中一个点,并希望通过这一点来辐射整座百草园的话,那么显然前面由两个“不必说”则是试图粗线条地勾勒这座乐园。我们把这种写法称之为“点面结合”。分析“面”整体1、齐读第一个“不必说”,根据老师在黑板上的图示,能不能说说作者观察事物的空间顺序是什么样的呢?写的又都是什么样的事物呢?从什么感官角度写的呢?明确:从低到高的空间顺序写的是静态的事物。从视觉和触觉的角度来写。2、齐读第二个“也不必说”,告诉老师,它的空间顺序是否和前面相同呢,还是有所改变?写的还是与之前类似的事物吗?又是从什么感官角度来写的呢?明确:由高到低的空间顺序写的是动态的事物。从听觉和视觉的角度写的。总结:在整体部分,我们看到作者从静物写到动物,充分调用了视觉和听觉的感官系统。在这幅趣味盎然的水彩画中,这两句话无疑是浓缩精华的重重一笔。分析“点”局部“泥墙根一带”1、借由“单是泥墙根一带,就有无限趣味”一句,自然过渡到下文的局部描写,这部分的景物描写有没有像前面一样富有变化呢?明确:和前面不同,这里的油蛉、蟋蟀、蜈蚣和斑蝥是属于动态的事物,而何首乌藤、木莲藤和覆盆子则属于静态的事物。所以泥墙根部分是由动物写到静物。2、那么,这里所写的动物是由什么感觉角度来描写的呢?这句话运用了什么修辞手法呢?明确:从听觉角度运用拟人的修辞手法,抓住了这些动