函数模型及其应用课件-高三数学一轮总复习.pptx
-
资源ID:88069812
资源大小:2.91MB
全文页数:48页
- 资源格式: PPTX
下载积分:13金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
函数模型及其应用课件-高三数学一轮总复习.pptx
第九节函数模型及其应用最新考纲1了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义2了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用考向预测考情分析:考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,预计高考对本节考查将延续近几年的考查风格,各种题型均有可能,属中档题学科素养:通过函数模型的应用考查数学建模的核心素养一、必记3个知识点1几种常见的函数模型函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)与指数函数相关的模型f(x)baxc(a,b,c为常数,a0且a1,b0)与对数函数相关的模型f(x)blogaxc(a,b,c为常数,a0且a1,b0)与幂函数相关的模型f(x)axnb(a,b,n为常数,a0)2.指数、对数、幂函数模型性质比较函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性单调_单调_单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与_平行随x的增大逐渐表现为与_平行随n值变化而各有不同值的比较存在一个x0,当xx0时,有logaxxn0,b1)增长速度越来越快的形象比喻()(3)幂函数增长比直线增长更快()答案:183必修1P103例4改编某动物繁殖量y(只)与时间x(年)的关系为yalog3(x1),设这种动物第2年有100只,则到第8年繁殖到_只答案:200解析:依题意知alog33100,a100.当x8时,y100log39200.(三)易错易混4(折线图识别不清)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是31B结余最高的月份是7月C1至2月份的收入的变化率与4至5月份的收入的变化率相同D前6个月的平均收入为40万元答案:D5(对函数增长速度认识不清)已知f(x)x2,g(x)2x,h(x)log2x,当x(4,)时,对三个函数的增长速度进行比较,下列选项中正确的是()Af(x)g(x)h(x)Bg(x)f(x)h(x)Cg(x)h(x)f(x)Df(x)h(x)g(x)答案:B答案:C考点一利用函数的图象刻画实际问题基基础性性12022青岛质检改编某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论不正确的是()A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8月D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳解析:由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误,其余全部正确答案:A则下列结论不正确的是()A在t1,t2这段时间内,甲企业的污水治理能力比乙企业强B在t2时刻,甲企业的污水治理能力比乙企业强C在t3时刻,甲、乙两企业的污水排放都已达标D甲企业在0,t1,t1,t2,t2,t3这三段时间中,在0,t1的污水治理能力最强答案:D103考点二应用所给函数模型解决实际问题综合性合性例12020山东卷基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间在新冠肺炎疫情初始阶段,可以用指数模型:I(t)ert描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R01rT.有学者基于已有数据估计出R03.28,T6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln20.69)()A1.2天B1.8天C2.5天D3.5天答案:B答案:C答案:A答案:C角度3分段函数模型例4某旅游区为了提倡低碳生活,在景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分)(1)求函数yf(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?【对点训练】1某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y14.1x0.1x2,在B地的销售利润(单位:万元)为y22x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A10.5万元B11万元C43万元D43.025万元解析:设在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16x)辆,所以可得利润y4.1x0.1x22(16x)0.1x22.1x320.1(x10.5)20.110.5232.因为x0,16且xN,所以当x10或11时,总利润取得最大值43万元答案:C3提高过江大桥的车辆通行能力可改善整个城市的交通状况在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时研究表明:当20 x200时,车流速度v是车流密度x的一次函数(1)当0 x200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)xv(x)可以达到最大,并求出最大值(精确到1辆/小时)微专题 12 实际问题中的数学模型数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程主要包括:在实际情境中从数学的视角发现问题,提出问题,分析问题,构建模型,求解结论,验证结果并改进模型,最终解决实际问题